
Let x,y ∈ Rn, p > 1, and q such that 1
p + 1

q = 1. Consider

a =
|[x]i|p
n∑

j=1

|[x]j |p
, b =

|[y]i|q
n∑

j=1

|[y]j |q
, α =

1

p
, and (1− α) =

1

q
.

Then we have 
|[x]i|p
n∑

j=1

|[x]j |p



1
p


|[y]i|q
n∑

j=1

|[y]j |q



1
q

≤ |[x]i|p

p

n∑
j=1

[x]pj

+
|[y]i|q

q

n∑
j=1

|[y]j |q
.

and summing over i, we obtain the Hölder inequality:

⟨x,y⟩ ≤ ∥x∥p∥y∥q

where ∥x∥p :=

(
n∑

i=1

|[x]i|p
) 1

p

.

Theorem 6.13 Let {fi}i∈I be a family of (finite or infinite) functions which are bounded from
above and fi ∈ F(Rn). Then, f(x) := sup

i∈I
fi(x) is convex in Rn.

Proof:
For each i ∈ I, since fi ∈ F(Rn), its epigraph Ei = {(x, y) ∈ Rn+1 | fi(x) ≤ y} is convex in

Rn+1 by Theorem 6.9. Also their intersection∩
i∈I

Ei =
∩
i∈I

{
(x, y) ∈ Rn+1 | fi(x) ≤ y

}
=

{
(x, y) ∈ Rn+1

∣∣∣∣ sup
i∈I

fi(x) ≤ y

}
is convex by Exercise 1 of Section 1, which is exactly the epigraph of f(x).

6.2 Strongly Convex Functions

Definition 6.14 A continuously differentiable function f(x) is called strongly convex on Rn (no-
tation f ∈ S1

µ(Rn)) if there exists a constant µ > 0 such that

f(y) ≥ f(x) + ⟨f ′(x),y − x⟩+ 1

2
µ∥y − x∥22, ∀x,y ∈ Rn.

The constant µ is called the convexity parameter of the function f .

Example 6.15 The following functions are strongly convex functions:

1. f(x) = 1
2∥x∥

2
2.

2. f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩, for A ⪰ µI.

3. A sum of a convex and a strongly convex functions.

Corollary 6.16 If f ∈ S1
µ(Rn) and f ′(x∗) = 0, then

f(x) ≥ f(x∗) +
1

2
µ∥x− x∗∥22, ∀x ∈ Rn.
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Proof:
Left for exercise.

Theorem 6.17 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ S1
µ(Rn).

2. µ∥x− y∥22 ≤ ⟨f ′(x)− f ′(y),x− y⟩, ∀x,y ∈ Rn.

3. f(αx+ (1− α)y) + α(1− α)µ2∥x− y∥22 ≤ αf(x) + (1− α)f(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1].

Proof:
Left for exercise.

Theorem 6.18 If f ∈ S1
µ(Rn), we have

1. f(y) ≤ f(x) + ⟨f ′(x),y − x⟩+ 1
2µ∥f

′(x)− f ′(y)∥22, ∀x,y ∈ Rn,

2. ⟨f ′(x)− f ′(y),x− y⟩ ≤ 1
µ∥f

′(x)− f ′(y)∥22, ∀x,y ∈ Rn.

Proof:
Let us fix x ∈ Rn, and define the function ϕ(y) = f(y)− ⟨f ′(x),y⟩. Clearly, ϕ ∈ S1

µ(Rn). Also,
one minimal solution is x. Therefore,

ϕ(x) = min
v∈Rn

ϕ(v) ≥ min
v∈Rn

[
ϕ(y) + ⟨ϕ′(y),v − y⟩+ µ

2
∥v − y∥22

]
= ϕ(y)− 1

2µ
∥ϕ′(y)∥22

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

The converse of Theorem 6.18 is not valid. For instance, consider f(x1, x2) = x21 − x22, µ = 1.
Then the inequalities 1. and 2. are satisfied but f /∈ S1

µ(R2) for any µ > 0.

Theorem 6.19 Let f be a twice continuously differentiable function. Then f ∈ S2
µ(Rn) if and only

if
f ′′(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Corollary 6.20 Let f be a twice continuously differentiable function. Then f ∈ S2,1
µ,L(R

n) if and
only if

LI ⪰ f ′′(x) ⪰ µI, ∀x ∈ Rn.

Theorem 6.21 If f ∈ S1,1
µ,L(R

n), then

µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥f ′(x)− f ′(y)∥22 ≤ ⟨f ′(x)− f ′(y),x− y⟩, ∀x,y ∈ Rn.
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