Theorem 6.5 Let f be a continuously differentiable function. The following conditions are equivalent:

1. $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$.
2. $f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}, \forall \alpha \in[0,1]$.
3. $\left\langle f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\right\rangle \geq 0, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$.

Proof: Left for exercise.
Theorem 6.6 Let f be a twice continuously differentiable function. Then $f \in \mathcal{F}^{2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
f^{\prime \prime}(\boldsymbol{x}) \succeq \boldsymbol{O}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Proof: Let $f \in \mathcal{F}^{2}\left(\mathbb{R}^{n}\right)$, and denote $\boldsymbol{x}_{\tau}=\boldsymbol{x}+\tau \boldsymbol{s}, \tau>0$. Then, from the previous result

$$
\begin{aligned}
0 & \leq \frac{1}{\tau^{2}}\left\langle f^{\prime}\left(\boldsymbol{x}_{\tau}\right)-f^{\prime}(\boldsymbol{x}), \boldsymbol{x}_{\tau}-\boldsymbol{x}\right\rangle=\frac{1}{\tau}\left\langle f^{\prime}\left(\boldsymbol{x}_{\tau}\right)-f^{\prime}(\boldsymbol{x}), \boldsymbol{s}\right\rangle \\
& =\frac{1}{\tau} \int_{0}^{\tau}\left\langle f^{\prime \prime}(\boldsymbol{x}+\lambda \boldsymbol{s}) \boldsymbol{s}, \boldsymbol{s}\right\rangle d \lambda \\
& =\frac{F(\tau)-F(0)}{\tau}
\end{aligned}
$$

where $F(\tau)=\int_{0}^{\tau}\left\langle f^{\prime \prime}(\boldsymbol{x}+\lambda \boldsymbol{s}) \boldsymbol{s}, \boldsymbol{s}\right\rangle d \lambda$. Therefore, tending τ to 0 , we get $0 \leq F^{\prime}(0)=\left\langle f^{\prime \prime}(\boldsymbol{x}) \boldsymbol{s}, \boldsymbol{s}\right\rangle$, and we have the result.
Conversely, $\forall \boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f(\boldsymbol{y}) & =f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\int_{0}^{1} \int_{0}^{\tau}\left\langle f^{\prime \prime}(\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \lambda d \tau \\
& \geq f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle
\end{aligned}
$$

Corollary 6.7 Let f be a two times continuously differentiable function. $f \in \mathcal{F}_{L}^{2,1}\left(\mathbb{R}^{n}\right)$ if and only if $\boldsymbol{O} \preceq f^{\prime \prime}(\boldsymbol{x}) \preceq L \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}$.

Theorem 6.8 Let f be a continuously differentiable function in $\mathbb{R}^{n}, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, and $\alpha \in[0,1]$. Then the following conditions are equivalent:

1. $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
2. $0 \leq f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle \leq \frac{L}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.
3. $f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y})\right\|_{2}^{2} \leq f(\boldsymbol{y})$.
4. $0 \leq \frac{1}{L}\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y})\right\|_{2}^{2} \leq\left\langle f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\right\rangle$.
5. $0 \leq\left\langle f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y}), \boldsymbol{x}-\boldsymbol{y}\right\rangle \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.
6. $f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y})+\frac{\alpha(1-\alpha)}{2 L}\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y})\right\|_{2}^{2} \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})$.
7. $0 \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})-f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha(1-\alpha) \frac{L}{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}$.

Proof:
$1 \Rightarrow 2$ It follows from the definition of convex function and Lemma 3.4.
$2 \Rightarrow 3$ Fix $\boldsymbol{x} \in \mathbb{R}^{n}$, and consider the function $\phi(\boldsymbol{y})=f(\boldsymbol{y})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}\right\rangle$. Clearly $\phi(\boldsymbol{y})$ satisfies 2. Also, $\boldsymbol{y}^{*}=\boldsymbol{x}$ is a minimal solution. Therefore from 2 ,

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\phi\left(\boldsymbol{y}^{*}\right) \leq \phi\left(\boldsymbol{y}-\frac{1}{L} \phi^{\prime}(\boldsymbol{y})\right) \leq \phi(\boldsymbol{y})+\frac{L}{2}\left\|\frac{1}{L} \phi^{\prime}(\boldsymbol{y})\right\|_{2}^{2}+\left\langle\phi^{\prime}(\boldsymbol{y}),-\frac{1}{L} \phi^{\prime}(\boldsymbol{y})\right\rangle \\
& =\phi(\boldsymbol{y})+\frac{1}{2 L}\left\|\phi^{\prime}(\boldsymbol{y})\right\|_{2}^{2}-\frac{1}{L}\left\|\phi^{\prime}(\boldsymbol{y})\right\|_{2}^{2}=\phi(\boldsymbol{y})-\frac{1}{2 L}\left\|\phi^{\prime}(\boldsymbol{y})\right\|_{2}^{2} .
\end{aligned}
$$

Since $\phi^{\prime}(\boldsymbol{y})=f^{\prime}(\boldsymbol{y})-f^{\prime}(\boldsymbol{x})$, finally we have

$$
f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{x}\right\rangle \leq f(\boldsymbol{y})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}\right\rangle-\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}(\boldsymbol{x})\right\|_{2}^{2}
$$

$3 \Rightarrow 4$ Adding two copies of 3 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 4 .
$4 \Rightarrow 1$ Applying the Cauchy-Schwarz inequality to 4 , we obtain $\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}(\boldsymbol{y})\right\|_{2} \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$.
Also from Theorem 6.5, $f(\boldsymbol{x})$ is convex.
$2 \Rightarrow 5$ Adding two copies of 2 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 5 .

$$
\begin{aligned}
f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle & =\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau \\
& \leq \int_{0}^{1} \tau L\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} d \tau=\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
\end{aligned}
$$

The non-negativity follows from Theorem 6.5.
$3 \Rightarrow 6$ Denote $\boldsymbol{x}_{\alpha}=\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}$. From 3,

$$
\begin{aligned}
f(\boldsymbol{x}) & \geq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{\alpha}\right),(1-\alpha)(\boldsymbol{x}-\boldsymbol{y})\right\rangle+\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2} \\
f(\boldsymbol{y}) & \geq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{\alpha}\right), \alpha(\boldsymbol{y}-\boldsymbol{x})\right\rangle+\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2}
\end{aligned}
$$

Multiplying the first inequality by α, the second by $1-\alpha$, and summing up, we have

$$
\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}_{\alpha}\right)+\frac{\alpha}{2 L}\left\|f^{\prime}(\boldsymbol{x})-f^{\prime}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2}+\frac{1-\alpha}{2 L}\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}\left(\boldsymbol{x}_{\alpha}\right)\right\|_{2}^{2}
$$

Finally, using the inequality

$$
\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2}+(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2} \geq \alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2}
$$

we have the result.

$$
\left(\begin{array}{l}
-\alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2} \geq-\alpha(1-\alpha)\left(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|\right)_{2}^{2} \\
\text { Therefore } \\
\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2}+(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2}-\alpha(1-\alpha)\left(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|_{2}\right)^{2} \\
=\left(\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}-(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}\right)^{2} \geq 0
\end{array}\right)
$$

$6 \Rightarrow 3$ Dividing both sides by $1-\alpha$ and tending α to 1 , we obtain 3 .
$2 \Rightarrow 7$ From 2,

$$
\begin{aligned}
f(\boldsymbol{x}) & \leq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{\alpha}\right),(1-\alpha)(\boldsymbol{x}-\boldsymbol{y})\right\rangle+\frac{L}{2}(1-\alpha)^{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \\
f(\boldsymbol{y}) & \leq f\left(\boldsymbol{x}_{\alpha}\right)+\left\langle f^{\prime}\left(\boldsymbol{x}_{\alpha}\right), \alpha(\boldsymbol{y}-\boldsymbol{x})\right\rangle+\frac{L}{2} \alpha^{2}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}
\end{aligned}
$$

Multiplying the first inequality by α, the second by $1-\alpha$, and summing up, we have

$$
\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \leq f\left(\boldsymbol{x}_{\alpha}\right)+\frac{L}{2}\left(\alpha(1-\alpha)^{2}+(1-\alpha) \alpha^{2}\right)\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} .
$$

The non-negativity follows from Theorem 6.5.
$7 \Rightarrow 2$ Dividing both sides by $1-\alpha$ and tending α to 1 , we obtain 2 . The non-negativity follows from Theorem 6.5.

6.1 Convex Functions

Theorem 6.9 $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$ if and only if its epigraph $E:=\left\{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f(\boldsymbol{x}) \leq y\right\}$ is a convex.
Proof:
\Rightarrow Let $\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right) \in E$. Then for any $0 \leq \alpha \leq 1$, we have

$$
f\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}\right) \leq \alpha f\left(\boldsymbol{x}_{1}\right)+(1-\alpha) f\left(\boldsymbol{x}_{2}\right) \leq \alpha y_{1}+(1-\alpha) y_{2}
$$

and therefore $\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}, \alpha y_{1}+(1-\alpha) y_{2}\right) \in E$.
\Leftrightarrow Let $\left(\boldsymbol{x}_{1}, f\left(\boldsymbol{x}_{1}\right)\right),\left(\boldsymbol{x}_{2}, f\left(\boldsymbol{x}_{2}\right)\right) \in E$. By the convexity of E, for any $0 \leq \alpha \leq 1$,

$$
f\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}\right) \leq \alpha f\left(\boldsymbol{x}_{1}\right)+(1-\alpha) f\left(\boldsymbol{x}_{2}\right)
$$

and therefore, $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$.
Theorem 6.10 If $f \in \mathcal{F}\left(\mathbb{R}^{n}\right)$, then its λ-level set $L_{\lambda}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x}) \leq \lambda\right\}$ is convex for each $\lambda \in \mathbb{R}$. But the converse is not true.

Proof:
For any $\lambda \in \mathbb{R}$, let $\boldsymbol{x}, \boldsymbol{y} \in L_{\lambda}$. Then for $\forall \alpha \in(0,1)$, since $f \in \mathcal{F}\left(\mathbb{R}^{n}\right), f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq$ $\alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y}) \leq \alpha \lambda+(1-\alpha) \lambda=\lambda$. Therefore, $\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in L_{\lambda}$.

For the converse, $L_{\lambda}=\left\{x \in \mathbb{R} \mid f(x)=x^{3} \leq \lambda\right\}$ is convex for all $\lambda \in \mathbb{R}$, but $f \notin \mathcal{F}(\mathbb{R})$.
Theorem 6.11 (Jensen's inequality) A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if for any positive integer m, the following condition is valid

$$
\left.\begin{array}{l}
\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n} \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \geq 0 \\
\sum_{i=1}^{m} \alpha_{i}=1
\end{array}\right\} \Rightarrow f\left(\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}\right) \leq \sum_{i=1}^{m} \alpha_{i} f\left(\boldsymbol{x}_{i}\right) .
$$

Proof:
Left for exercise.
Example 6.12 The function $-\log x$ is convex in $(0,+\infty)$. Let $a, b \in(0,+\infty)$ and $0 \leq \alpha \leq 1$. Then, from the Jensen's inequality we have

$$
-\log (\alpha a+(1-\alpha) b) \leq-\alpha \log a-(1-\alpha) \log b .
$$

If we take the exponential of both sides, we obtain

$$
a^{\alpha} b^{1-\alpha} \leq \alpha a+(1-\alpha) b .
$$

For $\alpha=\frac{1}{2}$, we have the arithmetic-geometric mean inequality: $\sqrt{a b} \leq \frac{a+b}{2}$.

