
• Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

∥x0 − x∗∥2 <
2ℓ

M
(steepest descent method) ∥x0 − x∗∥2 <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

5.5 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min
x∈Rn

f(x)

with f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩ and A ≻ O. Since its minimal solution is x∗ = −A−1a, we can

rewrite f(x) as:

f(x) = α− ⟨Ax∗,x⟩+ 1

2
⟨Ax,x⟩

= α− 1

2
⟨Ax∗,x∗⟩+ 1

2
⟨A(x− x∗),x− x∗⟩.

Thus, f∗ = α− 1
2⟨Ax∗,x∗⟩ and f ′(x) = A(x− x∗).

Definition 5.16 Given a starting point x0, the linear Krylov subspaces is defined as

Lk = Lin{A(x0 − x∗), . . . ,Ak(x0 − x∗)}, k ≥ 1.

We claim temporarily that the sequence of points generated by a conjugate gradient method is
defined as follows:

xk = argmin{f(x) | x ∈ x0 + Lk}, k ≥ 1.

Lemma 5.17 For any k ≥ 1, Lk = Lin{f ′(x0), . . . , f
′(xk−1)}.

Proof:
Let us prove by induction hypothesis.
For k = 1, the statement is true since f ′(x0) = A(x0 − x∗).
Suppose the claim is true for some k ≥ 1. Then from the definition of the conjugate gradient

method,

xk = x0 +

k∑
i=1

λiA
i(x0 − x∗)

with some λi ∈ R, i = 1, . . . , k. Therefore,

f ′(xk) = A(x0−x∗)+

k∑
i=1

λiA
i+1(x0−x∗) = A(x0−x∗)+

k−1∑
i=1

λiA
i+1(x0−x∗)+λkA

k+1(x0−x∗).
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The first two terms of the last expression belongs to Lk from the induction hypothesis. And then,

Lin{Lk, f
′(xk)} ⊆ Lin{Lk,A

k+1(x0 − x∗)} = Lk+1.

If the equality does not hold, f ′(xk) ∈ Lk implies Ak+1(x0 − x∗) ∈ Lk, which again implies the
equality, or λk = 0, which implies that xk = xk−1 (algorithm terminated).

Lemma 5.18 For any k, ℓ ≥ 0, k ̸= ℓ, we have ⟨f ′(xk), f
′(xℓ)⟩ = 0.

Proof:
Let k ≥ i, and consider

ϕ(λ) = f

x0 +
k∑

j=1

λjf
′(xj−1)

 .

From the previous lemma, there is a λ∗ such that xk = x0 +
∑k

j=1 λ
∗
jf

′(xj−1). Moreover, λ∗ is the
minimum of the function ϕ(λ). Therefore,

∂ϕ

∂λi
(λ∗) = ⟨f ′(xk), f

′(xi−1)⟩ = 0.

Corollary 5.19 The sequence generated by the conjugate gradient method for the convex quadratic
function is finite.

Proof:
Since the number of orthogonal directions in Rn cannot exceed n.

Let us define δi = xi+1 − xi. It is clear that Lk = Lin{δ0, δ1, . . . , δk−1} (Exercise 5).

Lemma 5.20 For any k, ℓ ≥ 0, k ̸= ℓ, ⟨Aδk, δℓ⟩ = 0.

Proof:
Let k > ℓ. Then

⟨Aδk, δℓ⟩ = ⟨A(xk+1 − xk), δℓ⟩ = ⟨f ′(xk+1)− f ′(xk),xℓ+1 − xℓ⟩ = 0,

due to Lemma 5.18.

The vectors {δi} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the next

iterations as follows:

xk+1 = xk − hkf
′(xk) +

k−1∑
j=0

λjδj

Using the previous properties, we arrive that (see Exercise 6)

λj = 0, (j = 0, 1, . . . , k − 2), λk−1 =
hk∥f ′(xk)∥22

⟨f ′(xk)− f ′(xk−1), δk−1⟩
. (9)

Thus
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xk+1 = xk − hkpk

where

pk = f ′(xk)−
∥f ′(xk)∥22pk−1

⟨f ′(xk)− f ′(xk−1),pk−1⟩
.

Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method

Step 0: Let x0 ∈ Rn, compute f(x0), f
′(x0) and set p0 := f ′(x0), k := 0

Step 1: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk
Step 2: Compute f(xk+1) and f ′(xk+1)
Step 3: Compute the coefficient βk+1

Step 4: Set pk+1 := f ′(xk+1)− βk+1pk, k := k + 1 and go to Step 1

The most popular choices for the coefficient βk are:

1. Hestenes-Stiefel (1952): βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
⟨f ′(xk+1)−f ′(xk),pk⟩

.

2. Fletcher-Reeves (1964): βk+1 =
∥f ′(xk+1)∥22
∥f ′(xk)∥22

.

3. Polak-Ribière: βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
∥f ′(xk)∥22

.

4. Polak-Ribière plus: βk+1 = max
{
0,

⟨f ′(xk+1),f
′(xk+1)−f ′(xk)⟩

∥f ′(xk)∥22

}
.

5. Dai-Yuan (1999): βk+1 =
∥f ′(xk+1)∥22

⟨f ′(xk+1)−f ′(xk),pk⟩
.

5.6 Quasi-Newton Methods

The basic idea of the quasi-Newton methods is to approximate the Hessian matrix (or its inverse)
which we need to compute in the Newton method. There are of course infinitely many ways to do
so, but we choose the ones which satisfy the secant equation:

Hk+1yk = sk

where yk = f ′(xk+1)− f ′(xk), sk = xk+1 − xk.
The general scheme of the quasi-Newton method is as follows.

Quasi-Newton Method

Step 0: Let x0 ∈ Rn, H0 := I, k := 0. Compute f(x0), f
′(x0)

Step 1: Set pk := Hkf
′(xk)

Step 2: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk
Step 3: Compute f(xk+1) and f ′(xk+1)
Step 4: Compute Hk+1 from Hk, k := k + 1 and go to Step 1

The most popular updates for Hk+1 are:

1. BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Hk+1 :=

(
I − sk(yk)

T

⟨sk,yk⟩

)
Hk

(
I − yk(sk)

T

⟨sk,yk⟩

)
+

sk(sk)
T

⟨sk,yk⟩
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2. DFP (Davidon-Fletcher-Powell)

Hk+1 := Hk +
sk(sk)

T

⟨yk, sk⟩
− Hkyk(yk)

THk

⟨yk,Hkyk⟩

3. Symmetric-Rank-One

Hk+1 := Hk +
(sk −Hkyk)(sk −Hkyk)

T

⟨sk −Hkyk,yk⟩

In the same way for the conjugate gradient method, we can show that the quasi-Newton method
converges in finite number of iterations for a strictly convex quadratic function. Moreover, under
some strict convexity conditions at the neighborhood of the local minimum, it is possible to show
that its iterates converge super-linearly [Nocedal].

5.7 Exercises

1. Give a geometric interpretation of the following step-size strategies:

Let 0 < c1 < c2 < 1,

• Wolfe condition
f(xk − hf ′(xk)) ≤ f(xk)− c1h∥f ′(xk)∥22,
⟨f ′(xk − hf ′(xk)), f

′(xk)⟩ ≤ c2∥f ′(xk)∥22.

• Strong Wolfe condition

f(xk − hf ′(xk)) ≤ f(xk)− c1h∥f ′(xk)∥22,
|⟨f ′(xk − hf ′(xk)), f

′(xk)⟩| ≤ c2∥f ′(xk)∥22.

2. Consider a sequence {βk}∞k=0 which converges to zero.

The sequence is said to converge Q-linearly if there exists a scalar ρ ∈ (0, 1) such that∣∣∣∣βk+1

βk

∣∣∣∣ ≤ ρ,

for all k sufficiently large. Q-superlinear convergence occurs when we have

lim
k→∞

βk+1

βk
= 0,

while the convergence is Q-quadratic if there is a constant C such that

|βk+1|
β2
k

≤ C

for all k sufficiently large. Q-superquadratic convergence is indicated by

lim
k→∞

βk+1

β2
k

= 0.

(a) Show that the following implications are valid: Q-superquadratic ⇒ Q-quadratic ⇒ Q-
superlinear ⇒ Q-linear.

(b) Give examples of sequences which do not imply the opposite directions in the three cases
above.

A zero converging sequence {βk}∞k=0 is said to converge R-linearly if it is dominated by a

Q-linearly converging sequence. That is, if there is a Q-linearly converging sequence {β̂k}∞k=0

such that 0 ≤ |βk| ≤ β̂k.

(c) Give a sequence which is R-linearly converging but not Q-linearly converging.
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3. Let f(x) = 1
2x

TQx such that Q is symmetric, and indefinite. Apply the steepest descent
method with constant step. Show that if the starting point x0 belongs to the space spanned
by the negative eigenvectors, the sequence generated by the steepest descent method diverges.

4. In light of Theorem 5.15, show that under Assumption 5.14, if we want to obtain ∥xk−x∗∥2 <
ε, we need an order of ln(ln ε−1) iterations for the Newton method.

5. In the Section 5.5, show that Lk = {δ0, δ1, . . . , δk−1}.

6. In the same section, arrive at the expression (9) for a strictly convex quadratic function.

7. Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one formulae.

8. Given u,v ∈ Rn and a non-singular matrix M ∈ Rn×n, if 1+vTM−1u ̸= 0, then the following
formula is valid:

(M + uvT )−1 = M−1 − M−1uvTM−1

1 + vTM−1u
. (Sherman-Morrison formula)

Apply this formula to compute the inverses Bk+1 of Hk+1 for BFGS, DFP and symmetric-
rank-one formulae.

9. Apply the quasi-Newton method with BFGS, DFP, and Symmetric-Rank-One updates for the
strictly convex function f(x) = α+ ⟨a,x⟩+ 1

2⟨Ax,x⟩ with A ≻ O.

6 Differentiable Convex Functions

Definition 6.1 A continuously differentiable function f(x) is called convex on Rn (notation F1(Rn))
if

f(y) ≥ f(x) + ⟨f ′(x),y − x⟩, ∀x,y ∈ Rn.

if −f(x) is convex, f(x) is called concave.

Theorem 6.2 If f ∈ F1(Rn) and f ′(x∗) = 0, then x∗ is the global minimum of f(x) on Rn.

Proof: Left for exercise.

Lemma 6.3 If f ∈ F1(Rm), b ∈ Rm, and A : Rn → Rm, then

ϕ(x) = f(Ax+ b) ∈ F1(Rn).

Proof: Left for exercise.

Example 6.4 The following functions are differentiable and convex:

1. f(x) = ex

2. f(x) = |x|p, p > 1

3. f(x) = x2

1+|x|

4. f(x) = |x| − ln(1 + |x|)

5. f(x) =
∑m

i=1 e
αi+⟨ai,x⟩

6. f(x) =
∑m

i=1 |⟨ai,x⟩ − bi|p, p > 1
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