Remark 5.10 This is much better than the result of Theorem 5.6, since it does not depend on n.

Finally, consider the following problem under Assumption 5.11.

min f(x)

xecR"

Assumption 5.11
2,2 ,
L. feCy (R");
2. There is a local minimum x* of the function f(x);
3. We know some bound 0 < ¢ < L < oo for the Hessian at x*:

I =< f"(z*) < LI;

4. Our starting point xg is close enough to x*.

Theorem 5.12 Let f(x) satisfy our assumptions above and let the starting point xp be close

enough to a local minimum:

leo — @*l|s < 7 = o
ro = — = —.
0 0 2 M

Then, the steepest descent method with step-size h* = 2/(L + ¢) converges as follows:

_ k
. Tro 2/
— < 1-— .
I “"'2—f—r0< L+3£>

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are @y 1 = @ — hi f/ (k).
Since f'(x*) =0,

f(@y) = f(zx) — f'(2") = /01 (@ +7(zp — &) (x) — 2")dr = Gi(z) — T7),
and therefore,
Tpr1 — " =z — & — WGz, — %) = (I — hpGg)(x, — 7).
Let ry = ||@x — «*||2. From Lemma 3.6,
f'(x*) —7Mrid =2 f'(x* + 7(z), — %)) < f(2) + 7M.
Integrating all parts from 0 to 1 and using our hypothesis,
(- %’“M)I <Gy = (L+ %’“M)I.

Therefore,
(1 — (L + %’“M)) I<1—-hGy < (1 — (0 — %M}) I.

We arrive at
II — hiGill2 < max{|ax(hy)], |bg (i) |}

where ay(h) =1 —h({ — % M) and b (h) = h(L + 5 M) — 1.
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Notice that a;(0) = 1 and b (0) = —1.

Now, let us use our hypothesis that rog < 7.

When ay(h) = by(h), we have 1 — h(€ — 5 M) = h(L 4 £ M) — 1, and therefore
2

L+t

hi
(Surprisingly, it does not depend neither on M nor r). Finally,

2
r =l =@l < (1 g (0= 500) ) o = ol

S (Lot M
T _— _— TL.
ML=\T+¢ " " L+¢) "

That is,

and rg <1 < T
Now, let us analyze the rate of convergence. Multiplying the above inequality by M /(L + ¢),
_ 2,.2
Mrgyq < M(L E)TkJr M=r; ‘
L+7¢ (L+¢)? (L +0)?

Calling oy, = ]]‘ﬁ’z and g = LL-ié? we have

(1 — (ax — 0)%)
T (ar—q) ")

api1 < (1 —@ag+ai = ap(l+ag —q) =

Now, since 1, < %, ap —q = ]X[l’z — LL-fZ < 0,and 1+ (ap — q) = f—;ﬁ + ]Z[J:’z > 0. Therefore,

—1 < ar—q<0,and (7) becomes < 2k

1+g—oay -’
1 > 1+q_1.
Okl g
1
q_lzq(m_q_lz(1+q)<q_1>_
Ok+1 g Qg

and then,

q v q k 20 L+/4 (T
— —1>(1+ — —1)=(1+ _— -1 =(1+ ——1].
Qg _( Q) (ao ) ( Q) (L+€ Mry ( Q) 0

Finally, we arrive at

Tro 20 K
= —x¥s < 1-— .
Tk =l =2tz < 7 ( L+3£>

5.4 The Newton Method
Example 5.13 Let us apply the Newton method to find the root of the following function

t
t) = .
?(t) 1+t
Clearly t* = 0.
The Newton method will give:
o (tk) 2 3
toy1 =t — ¢/(tk) =tp — tk?(l + tk) = —t}.

Therefore, the method converges if |tg| < 1, it oscillates if |tg| = 1, and finally, diverges if |to] > 1.
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Assumption 5.14
2,2 _
1. feCy (R");
2. There is a local minimum «* of the function f(x);
3. The Hessian is positive definite at x*:

(") =4I, ¢>0;

4. Our starting point xq is close enough to x*.

Theorem 5.15 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point xg is close enough to x*:
lwo— 2l < 7=
- = —.
0 2 3N
Then ||x — x*||2 < 7 for all k of the Newton method and it converges quadratically:
M|z — =3
T — |2 < :
e T Py

Proof:
Let ry = ||@r — «*||2. From Lemma 3.6 and the assumption, we have for k = 0,

f"(xo) = f"(x*) — Mrol = (£ — Mrg)I. (8)

Since rg < T = % < %, we have £ — Mry > 0 and therefore, f”(xg) is invertible.
Consider the Newton method for k = 0, ©1 = x¢ — [f"(z0)] L f'(0).
Then

z—a* = xo—a" —[f"(x0)) " f'(wo)
1
= xg—x* — [f”(azg)]_l/ f"(x* + 1(xg — x*)) (0 — *)dT
0

= [f"(®0)] ' Go(mo — )

where Go = [/ [f"(z0) — f"(x* + 7(xo — x*))]dT.

Then
1
Goll: = | [ 1" (@0) ~ (" + (o — " )dr
0 2
1
< [ 1@~ '@ rlao - @) adr
0
1 ro
< / M|1 = 7|rodr = —M.
0 2
From (8),
1" (20)] ™ 2 < (£ = M) ™",
Then
Mrg
<
2(€ — M?"())
Since rg < 7 = 32—6, % <1, and r1 < rg.
One can see now that the same argument is valid for all k’s. I
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