
3. Goldstein-Armijo Rule

Find a sequence {hk}∞k=0 such that

α⟨f ′(xk),xk − xk+1⟩ ≤ f(xk)− f(xk+1),

β⟨f ′(xk),xk − xk+1⟩ ≥ f(xk)− f(xk+1),

where 0 < α < β < 1 are fixed parameters.

Since f(xk+1) = f(xk − hkf
′(xk)),

f(xk)− βhk∥f ′(xk)∥22 ≤ f(xk+1) ≤ f(xk)− αhk∥f ′(xk)∥22.

The acceptable steps exist unless f(xk+1) = f(xk − hf ′(xk)) is not bounded from below.

4. Barzilai-Borwein Step-Size1

Let us define sk−1 := xk − xk−1 and yk−1 := f ′(xk) − f ′(xk−1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h1k}∞k=1 and {h2k}∞k=1:

h1k :=
∥sk−1∥22

⟨sk−1,yk−1⟩
,

h2k :=
⟨sk−1,yk−1⟩
∥yk−1∥22

.

The first step-size is the one which minimizes the following secant condition ∥ 1
hsk−1 − yk−1∥22

while the second one minimizes ∥sk−1 − hyk−1∥22.

Now, consider the problem

min
x∈Rn

f(x)

where f ∈ C1,1
L (Rn), and f(x) is bounded from below.

Let us evaluate the result of one step of the steepest descent method.
Consider y = x− hf ′(x). From Lemma 3.4,

f(y) ≤ f(x) + ⟨f ′(x),y − x⟩+ L

2
∥y − x∥22

= f(x)− h∥f ′(x)∥22 +
h2L

2
∥f ′(x)∥22

= f(x)− h

(
1− h

2
L

)
∥f ′(x)∥22. (5)

Thus, one step of the steepest descent method decreases the value of the objective function at
least as follows for h∗ = 1/L.

f(y) ≤ f(x)− 1

2L
∥f ′(x)∥22.

1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141–148.
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Now, for the Goldstein-Armijo Rule, since xk+1 = xk − hkf
′(xk), we have:

f(xk)− f(xk+1) ≤ βhk∥f ′(xk)∥22,

and from (5)

f(xk)− f(xk+1) ≥ hk

(
1− hk

2
L

)
∥f ′(xk)∥22.

Therefore, hk ≥ 2(1− β)/L.
Also, substituting in

f(xk)− f(xk+1) ≥ αhk∥f ′(xk)∥22 ≥
2

L
α(1− β)∥f ′(xk)∥22.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

f(xk)− f(xk+1) ≥
ω

L
∥f ′(xk)∥22

for some positive constant ω.
Summing up the above inequality we have:

ω

L

N∑
k=0

∥f ′(xk)∥22 ≤ f(x0)− f(xN+1) ≤ f(x0)− f∗

where f∗ is the optimal value of the problem.
As a simple consequence we have

∥f ′(xk)∥2 → 0 as k → ∞.

Finally,

g∗N ≡ min
0≤k≤N

∥f ′(xk)∥2 ≤
1√

N + 1

[
1

ω
L(f(x0)− f∗)

]1/2
. (6)

Remark 5.8 g∗N → 0, but we cannot say anything about the rate of convergence of the sequence
{f(xk)} or {xk}.

Example 5.9 Consider the function f(x, y) = 1
2x

2 + 1
4y

4 − 1
2y

2. (0,−1)T and (0, 1)T are local
minimal solutions, but (0, 0)T is a stationary point.

If we start the steepest descent method from (1, 0)T , we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min
x∈Rn

f(x)

2. f ∈ C1,1
L (Rn)

3. f(x) is bounded from below
Oracle: Only function values are available
Approximate solution: Find x̄ ∈ Rn such that f(x̄) ≤ f(x0) and ∥f ′(x̄)∥2 < ϵ

From (6), we have

g∗N < ε if N + 1 >
L

ωε2
(f(x0)− f∗).
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