3. Goldstein-Armijo Rule

Find a sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ such that

$$
\begin{aligned}
& \alpha\left\langle f^{\prime}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle \leq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right), \\
& \beta\left\langle f^{\prime}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle \geq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right),
\end{aligned}
$$

where $0<\alpha<\beta<1$ are fixed parameters.
Since $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h_{k} f^{\prime}\left(\boldsymbol{x}_{k}\right)\right)$,

$$
f\left(\boldsymbol{x}_{k}\right)-\beta h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \leq f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\alpha h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

The acceptable steps exist unless $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h f^{\prime}\left(\boldsymbol{x}_{k}\right)\right)$ is not bounded from below.

4. Barzilai-Borwein Step-Size ${ }^{1}$

Let us define $\boldsymbol{s}_{k-1}:=\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$ and $\boldsymbol{y}_{k-1}:=f^{\prime}\left(\boldsymbol{x}_{k}\right)-f^{\prime}\left(\boldsymbol{x}_{k-1}\right)$. Then, we can define the Barzilai-Borwein (BB) step sizes $\left\{h_{k}^{1}\right\}_{k=1}^{\infty}$ and $\left\{h_{k}^{2}\right\}_{k=1}^{\infty}$:

$$
\begin{aligned}
h_{k}^{1} & :=\frac{\left\|s_{k-1}\right\|_{2}^{2}}{\left\langle\boldsymbol{s}_{k-1}, \boldsymbol{y}_{k-1}\right\rangle} \\
h_{k}^{2} & :=\frac{\left\langle\boldsymbol{s}_{k-1}, \boldsymbol{y}_{k-1}\right\rangle}{\left\|\boldsymbol{y}_{k-1}\right\|_{2}^{2}}
\end{aligned}
$$

The first step-size is the one which minimizes the following secant condition $\left\|\frac{1}{h} \boldsymbol{s}_{k-1}-\boldsymbol{y}_{k-1}\right\|_{2}^{2}$ while the second one minimizes $\left\|s_{k-1}-h \boldsymbol{y}_{k-1}\right\|_{2}^{2}$.

Now, consider the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

where $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $f(\boldsymbol{x})$ is bounded from below.
Let us evaluate the result of one step of the steepest descent method.
Consider $\boldsymbol{y}=\boldsymbol{x}-h f^{\prime}(\boldsymbol{x})$. From Lemma 3.4,

$$
\begin{align*}
f(\boldsymbol{y}) & \leq f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} \\
& =f(\boldsymbol{x})-h\left\|f^{\prime}(\boldsymbol{x})\right\|_{2}^{2}+\frac{h^{2} L}{2}\left\|f^{\prime}(\boldsymbol{x})\right\|_{2}^{2} \\
& =f(\boldsymbol{x})-h\left(1-\frac{h}{2} L\right)\left\|f^{\prime}(\boldsymbol{x})\right\|_{2}^{2} \tag{5}
\end{align*}
$$

Thus, one step of the steepest descent method decreases the value of the objective function at least as follows for $h^{*}=1 / L$.

$$
f(\boldsymbol{y}) \leq f(\boldsymbol{x})-\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{x})\right\|_{2}^{2}
$$

[^0]Now, for the Goldstein-Armijo Rule, since $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} f^{\prime}\left(\boldsymbol{x}_{k}\right)$, we have:

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \leq \beta h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2},
$$

and from (5)

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq h_{k}\left(1-\frac{h_{k}}{2} L\right)\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} .
$$

Therefore, $h_{k} \geq 2(1-\beta) / L$.
Also, substituting in

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \alpha h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \geq \frac{2}{L} \alpha(1-\beta)\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} .
$$

Thus, in the three step-size strategies excepting the BB step size considered here, we can say that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \frac{\omega}{L}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

for some positive constant ω.
Summing up the above inequality we have:

$$
\frac{\omega}{L} \sum_{k=0}^{N}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \leq f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}_{N+1}\right) \leq f\left(\boldsymbol{x}_{0}\right)-f^{*}
$$

where f^{*} is the optimal value of the problem.
As a simple consequence we have

$$
\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Finally,

$$
\begin{equation*}
g_{N}^{*} \equiv \min _{0 \leq k \leq N}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|_{2} \leq \frac{1}{\sqrt{N+1}}\left[\frac{1}{\omega} L\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right)\right]^{1 / 2} . \tag{6}
\end{equation*}
$$

Remark $5.8 g_{N}^{*} \rightarrow 0$, but we cannot say anything about the rate of convergence of the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ or $\left\{\boldsymbol{x}_{k}\right\}$.

Example 5.9 Consider the function $f(x, y)=\frac{1}{2} x^{2}+\frac{1}{4} y^{4}-\frac{1}{2} y^{2} .(0,-1)^{T}$ and $(0,1)^{T}$ are local minimal solutions, but $(0,0)^{T}$ is a stationary point.

If we start the steepest descent method from $(1,0)^{T}$, we will only converge to the stationary point.

We focus now on the following problem class:

Model:	1. $\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})$		
	2. $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$		
	3. $f(\boldsymbol{x})$ is bounded from below		
	Only function values are available		
Oracle:	Approximate solution:		
Find $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$ such that $f(\overline{\boldsymbol{x}}) \leq f\left(\boldsymbol{x}_{0}\right)$ and $\left\\|f^{\prime}(\overline{\boldsymbol{x}})\right\\|_{2}<\epsilon$			

From (6), we have

$$
g_{N}^{*}<\varepsilon \quad \text { if } \quad N+1>\frac{L}{\omega \varepsilon^{2}}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right) .
$$

[^0]: ${ }^{1}$ J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA Journal of Numerical Analysis, $\mathbf{8}$ (1988), pp. 141-148.

