Definition 5.2 The feasible set Q of (3) is

$$Q = \{ x \in S \mid f_i(x) \& 0, (j = 1, 2, ..., m) \}.$$

In the following items we assume $S \equiv \mathbb{R}^n$.

- If $Q \equiv \mathbb{R}^n$, (3) is a unconstrained optimization problem.
- If $Q \subseteq \mathbb{R}^n$, (3) is a constrained optimization problem.
- If all functionals $f(\mathbf{x}), f_j(\mathbf{x})$ are differentiable, (3) is a smooth optimization problem.
- If one of functionals f(x), $f_j(x)$ is non-differentiable, (3) is a non-smooth optimization problem
- If all constraints are linear $f_j(\mathbf{x}) = \langle \mathbf{a}_j, \mathbf{x} \rangle + b_j \ (j = 1, 2, ..., m), \ (3)$ is a linear constrained optimization problem.
 - In addition, if f(x) is linear, (3) is a linear programming problem.
 - In addition, if f(x) is quadratic, (3) is a quadratic programming problem.
- If f(x), $f_j(x)$ (j = 1, 2, ..., m) are quadratic, (3) is a quadratically constrained quadratic programming problem.

Definition 5.3 \boldsymbol{x}^* is called a *global optimal solution* of (3) if $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$, $\forall \boldsymbol{x} \in Q$. Moreover, $f(\boldsymbol{x}^*)$ is called the *global optimal value*. \boldsymbol{x}^* is called a *local optimal solution* of (3) if there exists an open ball $B(\boldsymbol{x}^*, \varepsilon) := \{\boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{x}^*||_2 < \varepsilon\}$ such that $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$, $\forall \boldsymbol{x} \in B(\boldsymbol{x}^*, \varepsilon) \cap Q$. Moreover, $f(\boldsymbol{x}^*)$ is called a *local optimal value*.

5.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function in the n-dimensional box.

$$\begin{cases}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \mathbf{x} \in B_n := {\mathbf{x} \in \mathbb{R}^n \mid 0 \le [\mathbf{x}]_i \le 1, i = 1, 2, \dots, n}.
\end{cases}$$
(4)

To be coherent, we use the ℓ_{∞} -norm:

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq n} |[\boldsymbol{x}]_i|.$$

Let us also assume that f(x) is Lipschitz continuous on B_n :

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le L \|\boldsymbol{x} - \boldsymbol{y}\|_{\infty}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in B_n.$$

Let us define a very simple method to solve (4), the uniform grid method.

Given a positive integer p > 0,

1. Form $(p+1)^n$ points

$$oldsymbol{x}_{i_1,i_2,\ldots,i_n} = \left(\frac{i_1}{p},\frac{i_2}{p},\ldots,\frac{i_n}{p}\right)^T$$

where $(i_1, i_2, \dots, i_n) \in \{0, 1, \dots, p\}^n$.

- 2. Among all points $x_{i_1,i_2,...,i_n}$, find a point \bar{x} which has the minimal value for the objective function.
- 3. Return the pair $(\bar{x}, f(\bar{x}))$ as the result.

Theorem 5.4 Let $f^* := f(x^*)$ be the global optimal value for (4). Then the uniform grid method yields

$$f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le \frac{L}{2p}.$$

Proof:

Let \boldsymbol{x}^* be a global optimal solution. Then there are coordinates (i_1, i_2, \ldots, i_n) such that $\boldsymbol{x} := \boldsymbol{x}_{i_1, i_2, \ldots, i_n} \leq \boldsymbol{x}^* \leq \boldsymbol{x}_{i_1 + 1, i_2 + 1, \ldots, i_n + 1} =: \boldsymbol{y}$. Observe that $[\boldsymbol{y}]_i - [\boldsymbol{x}]_i = 1/p$ for $i = 1, 2, \ldots, n$ and $[\boldsymbol{x}^*]_i \in [[\boldsymbol{x}]_i, [\boldsymbol{y}]_i]$ $(i = 1, 2, \ldots, n)$.

Consider $\hat{x} = (x + y)/2$ and form a new point \tilde{x} as:

$$[\tilde{m{x}}]_i := \left\{ egin{array}{ll} [m{y}]_i, & ext{if } [m{x}^*]_i \geq [\hat{m{x}}]_i \ [m{x}]_i, & ext{otherwise.} \end{array}
ight.$$

It is clear that $|[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$ for $i = 1, 2, \dots, n$. Then $\|\tilde{\boldsymbol{x}} - \boldsymbol{x}^*\|_{\infty} = \max_{1 \leq i \leq n} |[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$. Since $\tilde{\boldsymbol{x}}$ belongs to the grid,

$$f(\bar{x}) - f(x^*) \le f(\tilde{x}) - f(x^*) \le L \|\tilde{x} - x^*\|_{\infty} \le L/(2p).$$

Let us define our goal

Find
$$x \in B_n$$
 such that $f(x) - f(x^*) < \varepsilon$.

Corollary 5.5 The number of iterations necessary for the problem (4) for the uniform grid method is at most

$$\left(\left|\frac{L}{2\varepsilon}\right|+2\right)^n$$
.

Proof:

Take $p = \lfloor L/(2\varepsilon) \rfloor + 1$. Then, $p > L/(2\varepsilon)$ and from the previous theorem, $f(\bar{x}) - f(x^*) \le L/(2p) < \varepsilon$. Observe that we constructed $(p+1)^n$ points.

Consider the class of problems \mathcal{P} defined as follows:

Model:	$\min_{oldsymbol{x} \in B_n} f(oldsymbol{x}),$
	$f(\mathbf{x})$ is ℓ_{∞} -Lipschitz continuous on B_n .
Oracle:	Only function values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in B_n$ such that $f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon$

Theorem 5.6 For $\varepsilon < \frac{L}{2}$, the number of iterations necessary for the class of problems \mathcal{P} using any method which uses only function evaluations is always at least $(\lfloor \frac{L}{2\varepsilon} \rfloor)^n$.

Proof:

Let $p = \lfloor \frac{L}{2\varepsilon} \rfloor$ (which is ≥ 1 from the hypothesis).

Suppose that there is a method which requires $N < p^n$ calls of the oracle to solve the problem in \mathcal{P} .

Then, there is a point $\hat{\boldsymbol{x}} \in B_n = \{ \boldsymbol{x} \in \mathbb{R}^n \mid 0 \leq [\boldsymbol{x}]_i \leq 1, \ i = 1, 2, \dots, n \}$ where there is no test points in the <u>interior</u> of $B := \{ \boldsymbol{x} \mid \hat{\boldsymbol{x}} \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}} + \boldsymbol{e}/p \}$ where $\boldsymbol{e} = (1, 1, \dots, 1)^T \in \mathbb{R}^n$.

Let $\mathbf{x}^* := \hat{\mathbf{x}} + \mathbf{e}/(2p)$ and consider the function $\bar{f}(\mathbf{x}) := \min\{0, L \|\mathbf{x} - \mathbf{x}^*\|_{\infty} - \varepsilon\}$. Clearly, \bar{f} is ℓ_{∞} -Lipschitz continuous with constant L and its global minimum is $-\varepsilon$. Moreover, $\bar{f}(\mathbf{x})$ is non-zero valued only inside the box $B' := \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}^*\|_{\infty} \le \varepsilon/L\}$.

Since $2p \le L/\varepsilon$, $B' \subseteq \{x \mid ||x - x^*||_{\infty} \le 1/(2p)\} \subseteq B$.

Therefore, $\bar{f}(x)$ is equal to zero to all test points of our method and the accuracy of the method is ε .

If the number of calls of the oracle is less than p^n , the accuracy can not be better than ε . Theorem 5.6 supports the claim that the general optimization problem are unsolvable.

Example 5.7 Consider a problem defined by the following parameters. L=2, n=10, and $\varepsilon=0.01$ (1%).

lower bound $(L/(2\varepsilon))^n$: 10^{20} calls of the oracle

computational complexity of the oracle : at least n arithmetic operations total complexity : 10^{21} arithmetic operations

CPU : $1 \text{GHz or } 10^9 \text{ arithmetic operations per second}$

total time : 10^{12} seconds

one year : $\leq 3.2 \times 10^7$ seconds we need : ≥ 10000 years

- If we change n by n+1, the # of calls of the oracle is multiplied by 100.
- If we multiply ε by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 5.5 that the number of iterations of the uniform grid method is at least $(\lfloor L/(2\varepsilon)\rfloor+2)^n$. Theorem 5.6 showed that any method which uses only function evaluations requires at least $(\lfloor L/(2\varepsilon)\rfloor)^n$ calls to have a better performance than ε . If for instance we take $\varepsilon = \mathcal{O}(L/n)$, these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an optimal method for the class of problems \mathcal{P} .

5.3 Steepest Descent Method

Consider $f: \mathbb{R}^n \to \mathbb{R}$ a differentiable function in its domain.

Steepest Descent Method	
Choose:	$oldsymbol{x}_0 \in \mathbb{R}^n$
Iterate:	$x_{k+1} = x_k - h_k f'(x_k), k = 0, 1, \dots$

We consider four strategies for the step-size h_k :

1. Constant Step

The sequence $\{h_k\}_{k=0}^{\infty}$ is chosen in *advance*. For example

$$h_k := h > 0,$$

$$h_k := \frac{h}{\sqrt{k+1}}.$$

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence $\{h_k\}_{k=0}^{\infty}$ is chosen such that

$$h_k := \operatorname{argmin}_{h>0} f(\boldsymbol{x}_k - hf'(\boldsymbol{x}_k)).$$

This choice is only theoretical since even for the one dimensional case, it is very difficult and expensive.