
Proof:
Since x̂ ̸∈ int(C), there is a sequence {xk} which does not belong to the closure of C, C̄, and

converges to x̂. Now, denote by p(xk) the orthogonal projection of xk into C̄ by a standard norm.
One can see that by the convexity of C̄ [Bertsekas]

(p(xk)− xk)
T (x− p(xk)) ≥ 0, ∀x ∈ C̄.

Hence,

(p(xk)−xk)
Tx ≥ (p(xk)−xk)

T p(xk) = (p(xk)−xk)
T (p(xk)−xk)+(p(xk)−xk)

Txk ≥ (p(xk)−xk)
Txk.

Now, since xk ̸∈ C̄, calling dk = p(xk)−xk

∥p(xk)−xk∥ ,

dT
k x ≥ dT

k xk, ∀x ∈ C̄.

Since ∥dk∥ = 1, it has a converging subsequence which will converge to let us say d. Taking the
same indices for this subsequence for xk, we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C1 and C2 nonempty non-intersecting
convex subsets of Rn. Then, ∃d ∈ Rn, d ̸= 0 such that

sup
x1∈C1

dTx1 ≤ inf
x2∈C2

dTx2.

Proof:
Consider the set

C := {x2 − x1 ∈ Rn | x2 ∈ C2, x1 ∈ C1}

which is convex by Propositions 1.9 and 1.10.
Since C1 and C2 are disjoint, the origin 0 does not belong to the interior of C. From Proposi-

tion 2.1, there is d ̸= 0 such that dTx ≥ 0, ∀x ∈ C. Therefore

dTx1 ≤ dTx2, ∀x1 ∈ C1 and x2 ∈ C2.

Finally, since both C1 and C2 are nonempty, it follows the result.

3 Lipschitz Continuous Differentiable Functions

Hereafter, we define for a, b ∈ Rn, the standard inner product ⟨a, b⟩ :=
∑n

i=1 aibi, and the associated
norm to it ∥a∥2 :=

√
⟨a,a⟩.

Definition 3.1 Let Q be a subset of Rn. We denote by Ck,p
L (Q) the class of functions with the

following properties:

• Any f ∈ Ck,p
L (Q) is k times continuously differentiable on Q;

• Its pth derivative is Lipschitz continuous on Q with the constant L ≥ 0:

∥f (p)(x)− f (p)(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Q.

Observe that if f1 ∈ Ck,p
L (Q), f2 ∈ Ck,p

L (Q), and α, β ∈ R, then for L3 = |α|L1 + |β|L2 we have

αf1 + βf2 ∈ Ck,p
L3

(Q).

Lemma 3.2 Let f ∈ C2(Rn). Then f ∈ C2,1
L (Rn) if and only if ∥f ′′(x)∥2 ≤ L, ∀x ∈ Rn.
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Proof:
For x,y ∈ Rn,

f ′(y) = f ′(x) +

∫ 1

0
f ′′(x+ τ(y − x))(y − x)dτ

= f ′(x) +

(∫ 1

0
f ′′(x+ τ(y − x))dτ

)
(y − x).

Since ∥f ′′(x)∥2 ≤ L,

∥f ′(y)− f ′(x)∥2 ≤
∥∥∥∥∫ 1

0
f ′′(x+ τ(y − x))dτ

∥∥∥∥
2

∥y − x∥2

≤
∫ 1

0
∥f ′′(x+ τ(y − x))∥2dτ∥y − x∥2

≤ L∥y − x∥2.

On the other hand, for s ∈ Rn, and α ∈ R, α ̸= 0,

∥f ′(x+ αs)− f ′(x)∥2 ≤ αL∥s∥2.

Dividing both sides by α and taking the limit to zero,

∥f ′′(x)s∥2 ≤ L∥s∥2, s ∈ Rn.

Therefore, ∥f ′′(x)∥2 ≤ L.

Example 3.3

1. The linear function f(x) = α+ ⟨a,x⟩ ∈ C2,1
0 (Rn) since

f ′(x) = a, f ′′(x) = O.

2. The quadratic function f(x) = α + ⟨a,x⟩ + 1/2⟨Ax,x⟩ with A = AT belongs to C2,1
L (Rn)

where
f ′(x) = a+Ax, f ′′(x) = A, L = ∥A∥2.

3. The function f(x) =
√
1 + x2 ∈ C2,1

1 (R) since

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
≤ 1.

Lemma 3.4 Let f ∈ C1,1
L (Rn). Then for any x,y ∈ Rn, we have

|f(y)− f(x)− ⟨f ′(x),y − x⟩| ≤ L

2
∥y − x∥22.

Proof:
For any x,y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0
⟨f ′(x+ τ(y − x)),y − x⟩dτ

= f(x) + ⟨f ′(x),y − x⟩+
∫ 1

0
⟨f ′(x+ τ(y − x))− f ′(x),y − x⟩dτ.
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