Proof:

Since $\hat{\boldsymbol{x}} \notin \operatorname{int}(C)$, there is a sequence $\{\boldsymbol{x}_k\}$ which does not belong to the closure of C, \bar{C} , and converges to $\hat{\boldsymbol{x}}$. Now, denote by $p(\boldsymbol{x}_k)$ the orthogonal projection of \boldsymbol{x}_k into \bar{C} by a standard norm. One can see that by the convexity of \bar{C} [Bertsekas]

$$(p(\boldsymbol{x}_k) - \boldsymbol{x}_k)^T (\boldsymbol{x} - p(\boldsymbol{x}_k)) \ge 0, \quad \forall \boldsymbol{x} \in \bar{C}.$$

Hence,

$$(p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k})^{T}\boldsymbol{x} \ge (p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k})^{T}p(\boldsymbol{x}_{k}) = (p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k})^{T}(p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k}) + (p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k})^{T}\boldsymbol{x}_{k} \ge (p(\boldsymbol{x}_{k})-\boldsymbol{x}_{k})^{T}\boldsymbol{x}_{k}.$$

Now, since $\boldsymbol{x}_k \notin \bar{C}$, calling $\boldsymbol{d}_k = \frac{p(\boldsymbol{x}_k) - \boldsymbol{x}_k}{\|p(\boldsymbol{x}_k) - \boldsymbol{x}_k\|}$,

$$\boldsymbol{d}_k^T \boldsymbol{x} \geq \boldsymbol{d}_k^T \boldsymbol{x}_k, \quad \forall \boldsymbol{x} \in \bar{C}.$$

Since $\|d_k\| = 1$, it has a converging subsequence which will converge to let us say d. Taking the same indices for this subsequence for x_k , we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C_1 and C_2 nonempty non-intersecting convex subsets of \mathbb{R}^n . Then, $\exists d \in \mathbb{R}^n$, $d \neq 0$ such that

$$\sup_{oldsymbol{x}_1\in C_1}oldsymbol{d}^Toldsymbol{x}_1\leq \inf_{oldsymbol{x}_2\in C_2}oldsymbol{d}^Toldsymbol{x}_2.$$

Proof: Consider the set

 $C := \{ x_2 - x_1 \in \mathbb{R}^n \mid x_2 \in C_2, \quad x_1 \in C_1 \}$

which is convex by Propositions 1.9 and 1.10.

Since C_1 and C_2 are disjoint, the origin **0** does not belong to the interior of C. From Proposition 2.1, there is $d \neq 0$ such that $d^T x \ge 0$, $\forall x \in C$. Therefore

$$oldsymbol{d}^Toldsymbol{x}_1 \leq oldsymbol{d}^Toldsymbol{x}_2, \quad orall oldsymbol{x}_1 \in C_1 ext{ and } oldsymbol{x}_2 \in C_2.$$

Finally, since both C_1 and C_2 are nonempty, it follows the result.

3 Lipschitz Continuous Differentiable Functions

Hereafter, we define for $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$, the standard inner product $\langle \boldsymbol{a}, \boldsymbol{b} \rangle := \sum_{i=1}^n a_i b_i$, and the associated norm to it $\|\boldsymbol{a}\|_2 := \sqrt{\langle \boldsymbol{a}, \boldsymbol{a} \rangle}$.

Definition 3.1 Let Q be a subset of \mathbb{R}^n . We denote by $\mathcal{C}_L^{k,p}(Q)$ the class of functions with the following properties:

- Any $f \in \mathcal{C}_{L}^{k,p}(Q)$ is k times continuously differentiable on Q;
- Its *p*th derivative is Lipschitz continuous on Q with the constant $L \ge 0$:

$$\|f^{(p)}(oldsymbol{x}) - f^{(p)}(oldsymbol{y})\|_2 \leq L \|oldsymbol{x} - oldsymbol{y}\|_2, \quad orall oldsymbol{x}, oldsymbol{y} \in Q.$$

Observe that if $f_1 \in \mathcal{C}_L^{k,p}(Q)$, $f_2 \in \mathcal{C}_L^{k,p}(Q)$, and $\alpha, \beta \in \mathbb{R}$, then for $L_3 = |\alpha|L_1 + |\beta|L_2$ we have $\alpha f_1 + \beta f_2 \in \mathcal{C}_{L_3}^{k,p}(Q)$.

Lemma 3.2 Let $f \in \mathcal{C}^2(\mathbb{R}^n)$. Then $f \in \mathcal{C}_L^{2,1}(\mathbb{R}^n)$ if and only if $||f''(\boldsymbol{x})||_2 \leq L$, $\forall \boldsymbol{x} \in \mathbb{R}^n$.

Proof: For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$,

$$f'(\boldsymbol{y}) = f'(\boldsymbol{x}) + \int_0^1 f''(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x}))(\boldsymbol{y} - \boldsymbol{x})d\tau$$

= $f'(\boldsymbol{x}) + \left(\int_0^1 f''(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x}))d\tau\right)(\boldsymbol{y} - \boldsymbol{x}).$

Since $||f''(\boldsymbol{x})||_2 \leq L$,

$$\begin{split} \|f'(\boldsymbol{y}) - f'(\boldsymbol{x})\|_2 &\leq \left\| \int_0^1 f''(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) d\tau \right\|_2 \|\boldsymbol{y} - \boldsymbol{x}\|_2 \\ &\leq \int_0^1 \|f''(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x}))\|_2 d\tau \|\boldsymbol{y} - \boldsymbol{x}\|_2 \\ &\leq L \|\boldsymbol{y} - \boldsymbol{x}\|_2. \end{split}$$

On the other hand, for $\boldsymbol{s} \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$, $\alpha \neq 0$,

$$\|f'(\boldsymbol{x} + \alpha \boldsymbol{s}) - f'(\boldsymbol{x})\|_2 \le \alpha L \|\boldsymbol{s}\|_2.$$

Dividing both sides by α and taking the limit to zero,

$$\|f''(\boldsymbol{x})\boldsymbol{s}\|_2 \leq L\|\boldsymbol{s}\|_2, \quad \boldsymbol{s} \in \mathbb{R}^n.$$

Therefore, $||f''(\boldsymbol{x})||_2 \leq L$.

Example 3.3

1. The linear function $f(\boldsymbol{x}) = \alpha + \langle \boldsymbol{a}, \boldsymbol{x} \rangle \in \mathcal{C}^{2,1}_0(\mathbb{R}^n)$ since

$$f'(\boldsymbol{x}) = \boldsymbol{a}, \quad f''(\boldsymbol{x}) = \boldsymbol{O}.$$

2. The quadratic function $f(\boldsymbol{x}) = \alpha + \langle \boldsymbol{a}, \boldsymbol{x} \rangle + 1/2 \langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \rangle$ with $\boldsymbol{A} = \boldsymbol{A}^T$ belongs to $\mathcal{C}_L^{2,1}(\mathbb{R}^n)$ where

$$f'(x) = a + Ax, \quad f''(x) = A, \quad L = ||A||_2.$$

3. The function $f(x) = \sqrt{1 + x^2} \in \mathcal{C}_1^{2,1}(\mathbb{R})$ since

$$f'(x) = \frac{x}{\sqrt{1+x^2}}, \quad f''(x) = \frac{1}{(1+x^2)^{3/2}} \le 1.$$

Lemma 3.4 Let $f \in \mathcal{C}_L^{1,1}(\mathbb{R}^n)$. Then for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, we have

$$|f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle| \leq rac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2.$$

Proof:

For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, we have

$$\begin{split} f(\boldsymbol{y}) &= f(\boldsymbol{x}) + \int_0^1 \langle f'(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})), \boldsymbol{y} - \boldsymbol{x} \rangle d\tau \\ &= f(\boldsymbol{x}) + \langle f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \int_0^1 \langle f'(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle d\tau. \end{split}$$