Proof:
Since $\hat{\boldsymbol{x}} \notin \operatorname{int}(C)$, there is a sequence $\left\{\boldsymbol{x}_{k}\right\}$ which does not belong to the closure of C, \bar{C}, and converges to $\hat{\boldsymbol{x}}$. Now, denote by $p\left(\boldsymbol{x}_{k}\right)$ the orthogonal projection of \boldsymbol{x}_{k} into \bar{C} by a standard norm. One can see that by the convexity of \bar{C} [Bertsekas]

$$
\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T}\left(\boldsymbol{x}-p\left(\boldsymbol{x}_{k}\right)\right) \geq 0, \quad \forall \boldsymbol{x} \in \bar{C}
$$

Hence,

$$
\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{x} \geq\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} p\left(\boldsymbol{x}_{k}\right)=\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T}\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)+\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{x}_{k} \geq\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} x_{k} .
$$

Now, since $\boldsymbol{x}_{k} \notin \bar{C}$, calling $\boldsymbol{d}_{k}=\frac{p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}}{\left\|p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right\|}$,

$$
\boldsymbol{d}_{k}^{T} \boldsymbol{x} \geq \boldsymbol{d}_{k}^{T} \boldsymbol{x}_{k}, \quad \forall \boldsymbol{x} \in \bar{C}
$$

Since $\left\|\boldsymbol{d}_{k}\right\|=1$, it has a converging subsequence which will converge to let us say \boldsymbol{d}. Taking the same indices for this subsequence for \boldsymbol{x}_{k}, we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C_{1} and C_{2} nonempty non-intersecting convex subsets of \mathbb{R}^{n}. Then, $\exists \boldsymbol{d} \in \mathbb{R}^{n}, \boldsymbol{d} \neq 0$ such that

$$
\sup _{\boldsymbol{x}_{1} \in C_{1}} \boldsymbol{d}^{T} \boldsymbol{x}_{1} \leq \inf _{\boldsymbol{x}_{2} \in C_{2}} \boldsymbol{d}^{T} \boldsymbol{x}_{2}
$$

Proof:
Consider the set

$$
C:=\left\{\boldsymbol{x}_{2}-\boldsymbol{x}_{1} \in \mathbb{R}^{n} \mid \boldsymbol{x}_{2} \in C_{2}, \quad \boldsymbol{x}_{1} \in C_{1}\right\}
$$

which is convex by Propositions 1.9 and 1.10 .
Since C_{1} and C_{2} are disjoint, the origin $\mathbf{0}$ does not belong to the interior of C. From Proposition 2.1, there is $\boldsymbol{d} \neq \mathbf{0}$ such that $\boldsymbol{d}^{T} \boldsymbol{x} \geq \mathbf{0}, \forall \boldsymbol{x} \in C$. Therefore

$$
\boldsymbol{d}^{T} \boldsymbol{x}_{1} \leq \boldsymbol{d}^{T} \boldsymbol{x}_{2}, \quad \forall \boldsymbol{x}_{1} \in C_{1} \text { and } \boldsymbol{x}_{2} \in C_{2}
$$

Finally, since both C_{1} and C_{2} are nonempty, it follows the result.

3 Lipschitz Continuous Differentiable Functions

Hereafter, we define for $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$, the standard inner product $\langle\boldsymbol{a}, \boldsymbol{b}\rangle:=\sum_{i=1}^{n} a_{i} b_{i}$, and the associated norm to it $\|\boldsymbol{a}\|_{2}:=\sqrt{\langle\boldsymbol{a}, \boldsymbol{a}\rangle}$.

Definition 3.1 Let Q be a subset of \mathbb{R}^{n}. We denote by $\mathcal{C}_{L}^{k, p}(Q)$ the class of functions with the following properties:

- Any $f \in \mathcal{C}_{L}^{k, p}(Q)$ is k times continuously differentiable on Q;
- Its p th derivative is Lipschitz continuous on Q with the constant $L \geq 0$:

$$
\left\|f^{(p)}(\boldsymbol{x})-f^{(p)}(\boldsymbol{y})\right\|_{2} \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{2}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in Q
$$

Observe that if $f_{1} \in \mathcal{C}_{L}^{k, p}(Q), f_{2} \in \mathcal{C}_{L}^{k, p}(Q)$, and $\alpha, \beta \in \mathbb{R}$, then for $L_{3}=|\alpha| L_{1}+|\beta| L_{2}$ we have $\alpha f_{1}+\beta f_{2} \in \mathcal{C}_{L_{3}}^{k, p}(Q)$.

Lemma 3.2 Let $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$. Then $f \in \mathcal{C}_{L}^{2,1}\left(\mathbb{R}^{n}\right)$ if and only if $\left\|f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq L, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}$.

Proof:
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
f^{\prime}(\boldsymbol{y}) & =f^{\prime}(\boldsymbol{x})+\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}) d \tau \\
& =f^{\prime}(\boldsymbol{x})+\left(\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})) d \tau\right)(\boldsymbol{y}-\boldsymbol{x})
\end{aligned}
$$

Since $\left\|f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq L$,

$$
\begin{aligned}
\left\|f^{\prime}(\boldsymbol{y})-f^{\prime}(\boldsymbol{x})\right\|_{2} & \leq\left\|\int_{0}^{1} f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})) d \tau\right\|_{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \\
& \leq \int_{0}^{1}\left\|f^{\prime \prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))\right\|_{2} d \tau\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \\
& \leq L\|\boldsymbol{y}-\boldsymbol{x}\|_{2}
\end{aligned}
$$

On the other hand, for $s \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}, \alpha \neq 0$,

$$
\left\|f^{\prime}(\boldsymbol{x}+\alpha \boldsymbol{s})-f^{\prime}(\boldsymbol{x})\right\|_{2} \leq \alpha L\|\boldsymbol{s}\|_{2}
$$

Dividing both sides by α and taking the limit to zero,

$$
\left\|f^{\prime \prime}(\boldsymbol{x}) \boldsymbol{s}\right\|_{2} \leq L\|\boldsymbol{s}\|_{2}, \quad \boldsymbol{s} \in \mathbb{R}^{n}
$$

Therefore, $\left\|f^{\prime \prime}(\boldsymbol{x})\right\|_{2} \leq L$.

Example 3.3

1. The linear function $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle \in \mathcal{C}_{0}^{2,1}\left(\mathbb{R}^{n}\right)$ since

$$
f^{\prime}(\boldsymbol{x})=\boldsymbol{a}, \quad f^{\prime \prime}(\boldsymbol{x})=\boldsymbol{O}
$$

2. The quadratic function $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+1 / 2\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$ with $\boldsymbol{A}=\boldsymbol{A}^{T}$ belongs to $\mathcal{C}_{L}^{2,1}\left(\mathbb{R}^{n}\right)$ where

$$
f^{\prime}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{A} \boldsymbol{x}, \quad f^{\prime \prime}(\boldsymbol{x})=\boldsymbol{A}, \quad L=\|\boldsymbol{A}\|_{2}
$$

3. The function $f(x)=\sqrt{1+x^{2}} \in \mathcal{C}_{1}^{2,1}(\mathbb{R})$ since

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, \quad f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} \leq 1
$$

Lemma 3.4 Let $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Then for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\left|f(\boldsymbol{y})-f(\boldsymbol{x})-\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| \leq \frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}
$$

Proof:
For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
f(\boldsymbol{y}) & =f(\boldsymbol{x})+\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau \\
& =f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\int_{0}^{1}\left\langle f^{\prime}(\boldsymbol{x}+\tau(\boldsymbol{y}-\boldsymbol{x}))-f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle d \tau
\end{aligned}
$$

