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Noise and Interference
［ Contents ］

• Noise
• Interference
• Array Signal Processing for Interference 

Canceling
• RF Front-end Signal Processing 
• Spatial Fading Emulator
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• Noise and Interference in Wireless 
Communication Systems

Noise and Interference determine a quality of 
communication system and an achievable bit 
rate.
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Schematic diagram of 
wireless communication systems
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Noise and Interference in TX
• Transmitter noise

(Continuous spectrum noise below 60dB)
← Spectrum Impurity (Phase Noise) in Local Oscillator
High S / N Oscillators are required.

• Spurious radiation (Line spectrum noise)
← Non-linearity in power-amplifiers and/or frequency

converter
Sharp Band pass Filters are required.

• Inter-modulation in TX
← Strong another signal entering through TX antenna

High-Q Filters and Isolators are required.
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Noise and Interference in 
Radio Wave Channel

• External noise
← Lightning, Solar noise, Thermal noise,  

Artificial noise, …, impulsive and continuous 
spectrum noise

• Co-channel interference
→ Sensitivity suppression

• Adjacent-channel interference
→ Side-lobe spectrum of adjacent channel signal
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Noise and Interference in RX
• Receiver noise
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• Sensitivity suppression
Low gain before IF-stage, Sharp Band-pass 
Filter in RF-stage and IF-stage, and Low 
noise in LO are required.

• Spurious reception
Image frequency

• Inter-modulation in RX
3rd order and 5th order IMD are dominant.
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Noise
• Thermal noise

The equivalent noise power spectrum density in 
W/Hz generated in any ideal coherent amplifier of 
electromagnetic wave

Hz)10(enough  small is frequency When 10f

  kTehfN kThf  10

kTN 0

 
constantBoltzman  :

106.6252 constantPlanck  : where -34

k
sJh 

2013/05/15 Wireless Communication Engineering I 11

• Shot noise: Poisson Process

• Switching noise of Capacitance
kT/C

current) (DC 00 IN 
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Equivalent Noise Temperature of 
Noise Sources
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The corresponding overall noise figure is then 
given by the Friis noise formula,
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F1 should be minimum.
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Power-limited System & 
Interference-limited System

• Propagation-limited systems
Thermal and man-made noise play the most 
important roles in large-scale systems.
(i.e. satellite systems)

• Interference-limited systems
Unwanted interfering signals from nearby cells in 
which the same frequency is reused, play the most 
critical role in cellar and micro cellar systems.



5

2013/05/15 Wireless Communication Engineering I 17

• Propagation delay
Severe inter-symbol interference is  possible if the 
differential delay between two signals is too great and 
the received power levels are nearly equal.

• Simulcast transmitting frequency offsets
In digital paging applications, frequencies are often 
offset from each other to mitigate the effects of 
standing wave interference patterns, which could 
otherwise cause localized areas of poor coverage.
The offset frequency increments for digital messaging 
systems having symbol rates up to 3,200 symbols per 
second are 100-450Hz. The maximum offset of the 
carrier frequency is chosen to never exceed          Hz.600
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Interference  in 
Mobile Communication Systems

• Personal Radio
(Simplex: Signal channel, non-simultaneous transmission)
Maximum Interference Effect

• MCA
(Dusimplex: Two channels, non-simultaneous transmission)
Medium Interference Effect

• Automotive Telephone
(Duplex: Two channels, simultaneous transmission)
Low Interference Effect
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Interference Cancel by 
Array Signal Processing

Spatial Signal Processing
– SINR Criteria
– MSE Criteria
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• Linear Signal Processing
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Null Steering
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• Interference Canceling principle → 
ZF (Zero Forcing)   Optimum Weight Vector
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• Maximizing SINR principle →
DCMP (Directional Constraint Minimization of Power)
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• Direction Finding Technique ⇒
Estimate of SS,

• MUSIC (Multiple Signal Classification)
• ESPRIT

– SUB-SPACE METHOD
– A PRIORI KNOWLEDGE OF SIGNAL IS NOT

REQUIRED

 a

→ Blind Estimation
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Super resolution techniques
• Model-based parameter estimation
• Fine resolution than Sampling Theorem
• MUSIC, ESPRIT : Powerful DOA 

techniques especially in radar application.
RF FRONT-END FOR 

SPATIAL PROCESSING
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FREQUENCY CONVERSION 
FROM RF TO IF
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ARRAY PROCESSING by Gilbert 
Cell and Transformer
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DESIRED UNDESIRED
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MEASURED RESULTS
BEFORE AND AFTER SIGNAL 
PROCESSING for Interference 

Canceling
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Spatial Fading Emulator

- The field testing of radio transmission techniques is often 
time-consuming.
- The evaluation of cellular base station antenna arrays in 

an anechoic chamber is needed.
- With the use of an ESPAR antenna, the superposition of 

scattered waves can be made easily. 
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Agenda
• Background
• Spatial Fading Emulator
• Deterministic Estimation
• Complex Angle
• Experimental Results
• Conclusion & Future works
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Propagation of mobile 
communication

Fading wave caused by the superposition of scattered waves

→With the use of an ESPAR antenna, 
fading waves can be easily made.
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Structure of Emulator

The input impedance of surrounding 
parasitic elements will be controlled 
to generate the fading properties.

Y : Array Antenna Admittance Matrix     : fixed

: variable
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Control of bias voltages to varactors

Control of YL

Control of  [i1, i2, …, ir ]

Control of multiple waves
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Approximated Equation of Received Signal

Received signal model  (a(θi): Array mode vector) θi:DOA

→ Number of estimate 
parameters is 2×N

γ and θ, for the case where f is minimum, become 
the Maximum likelihood values.

[approximated by Taylor Series Expansion]
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Approximated Equation of Received Signal

[approximate]

θ+ξ is a complex angle, the angular spread is also expressed.
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Parameter Estimation

→ Estimate γ and θ where f  is minimum

s(t)=1 , because a Network Analyzer is used.

1. Least mean square w.r.t. γ

2. The cost function is

Parameter search

)( 21  j

max

→ Minimum
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Distribution of a Complex Angle
• Distribution of a Complex Angle is

→ the ratio of two Gaussian distributions

Parameter C is the absolute first order moment
of M-distribution and equal to the standard 
deviation of DOA of the scattering wave are in 
agreement.

[ M-distribution ]
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• Random FM noise
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Error of parameter estimation

• Additive noise including system error is

Since approximation error is large when γ is small,
the noiseｎbecomes large.

When γ is smaller than the standard deviation of noise σ,
estimation is not appropriate.
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Experiments in an anechoic 
chamber

• Measurement
Frequency:2.484[GHz]
Distance:about 1.2[m](=10[λ])

The fading wave from an ESPAR antenna is measured 
by a synthetic array with  6 elements.
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Experiments in an anechoic 
chamber
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• Time property –Received power

Received Signal Power Estimated DOA
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Cumulative Probability of
Received Signal power

Level Crossing Rate of Received 
Signal Power
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• Spatial property -DOA&AS

Probability Distribution of DOA Probability Distribution of AS

- The performance of the fading emulator was verified 
using experimental data. 
- Using the ESPAR antenna, evaluation of the array 
signal processing system becomes a much easier task.
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Conclusion
• Emulation of Rayleigh fading in an anechoic 

chamber with angular spread  is realized. 
• It emulates cheaply and simply.
• Estimation by the Maximum Likelihood 

method is effective.
• It was shown that an ideal angular spread is 

emulated by M-distribution.
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Future works

• Concurrent emulation of the multiple user 
• Control of the phase distribution
• Spatial correlation


