

Agenda (2)

• Hash Functions

- Key Distribution and Key Agreement
- Identification Schemes
- Authentication Codes
- Secret Sharing Schemes
- Pseudo-random Number Generation
- Zero-knowledge Proofs
- Power Analysis

2013/08/02

Wireless Communication Engineering I

2013/08/02

2

Wireless Communication Engineering I

3. K, the key-space, is a finite set of possible keys

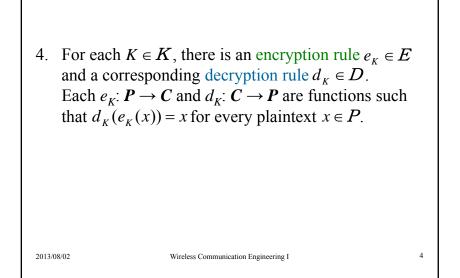
Cryptosystem

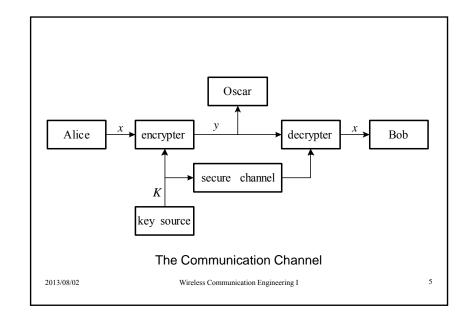
A cryptosystem is a five-tuple (**P**, **C**, **K**, **E**, **D**), where

the following conditions are satisfied:

1. *P* is a finite set of possible plaintexts

2. *C* is a finite set of possible cipher-texts





Let $P = C = K = Z_{26}$. For $0 \le K \le 25$, define $e_K(x) = x + K \mod 26$ and $d_K(y) = y - K \mod 26$ $(x, y \in Z_{26})$. Shift Cipher Let $P = C = Z_{26}$. *K* consists of all possible permutations of the 26 symbols 0, 1, ..., 25. For each permutation $\pi \in K$, define $e_{\pi}(x) = \pi(x)$, and define $d_{\pi}(y) = \pi^{-1}(y)$, where π^{-1} is the inverse permutation to π . Substitution Cipher

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose **X** and **Y** are random variables. We denote the probability that **X** takes on the value *x* by p(x), and the probability that **Y** takes on the value *y* by p(y). The joint probability p(x, y) is the probability that **X** takes on the value *x* and **Y** takes on the value *y*.

2013/08/02

Wireless Communication Engineering

The conditional probability p(x|y) denotes the probability that **X** takes on the value *x* given that **Y** takes on the value *y*. The random variables **X** and **Y** are said to be independent if p(x, y) = p(x) p(y) for all possible values *x* of **X** and *y* of **Y**.

2013/08/02

Wireless Communication Engineering I

Joint probability can be related to conditional probability by the formula

$$p(x, y) = p(x|y)p(y).$$

Interchanging *x* and *y*, we have that

$$p(x, y) = p(y|x)p(x).$$

2013/08/02

Wireless Communication Engineering I

10

8

From these two expressions, we immediately obtain the following result, which is known as Bayes' Theorem.

Bayes' Theorem If p(y) > 0, then

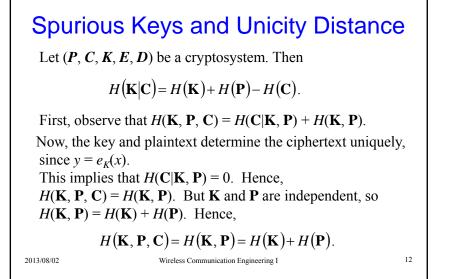
$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}$$

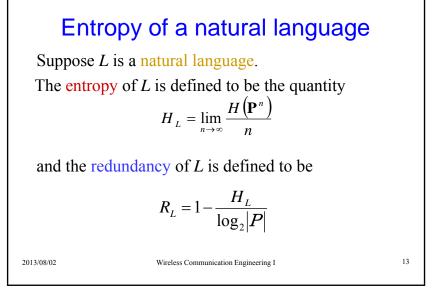
2013/08/02

Wireless Communication Engineering I

3

9





 H_L measures the entropy per letter of the language *L*. A random language would have entropy $\log_2 |\mathbf{P}|$.

So the quantity R_L measures the fraction of ``excess characters," which we think of as redundancy.

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_0 , at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$n_0 \approx \frac{\log_2 |K|}{R_L \log_2 |P|}$$

14

Wireless Communication Engineering I

2013/08/02

Wireless Communication Engineering I

DES

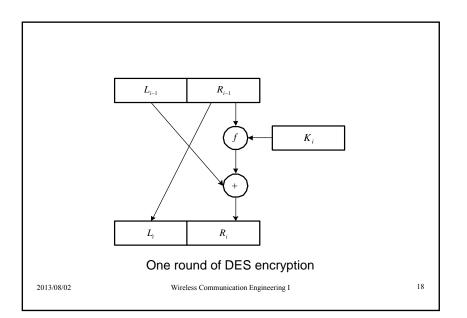
- 1. Given a plaintext *x*, a bit-string x_0 is constructed by permuting the bits of *x* according to a (fixed) initial permutation IP. We write $x_0 = IP(x) = L_0R_0$, where L_0 comprises the first 32 bits of x_0 and R_0 the last 32 bits.
- 2. 16 iterations of a certain function are then computed. We compute $L_i R_i$, $1 \le i \le 16$, according to the following rule:

$$L_i = R_{i-1}$$
$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

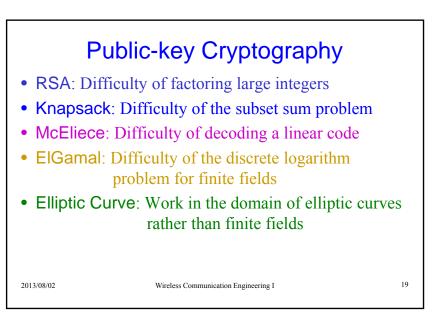
2013/08/02

Wireless Communication Engineering

16



where ⊕ denotes the exclusive-or of two bit-strings. *f* is a function that we will describe later, and *K*₁, *K*₂, ..., *K*₁₆ are each bit-strings of length 48 computed as a function of the key *K*. (Actually, each *K_i* is a permuted selection of bits from *K*.) *K*₁, *K*₂, ..., *K*₁₆ comprises the *key schedule*. One round of encryption is depicted in Figure 3.1
3. Apply the inverse permutation IP⁻¹ to the bit-string *R*₁₆ *L*₁₆, obtaining the cipher-text *y*. That is, *y* = IP⁻¹(*R*₁₆ *L*₁₆). Note the inverted order of *L*₁₆ and *R*₁₆.



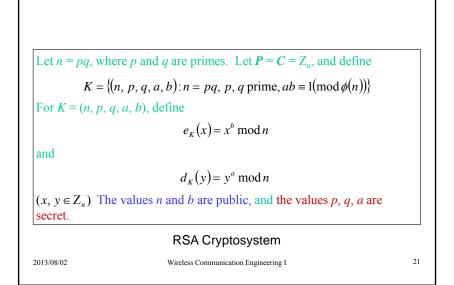
1. *z* = 1

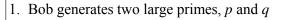
- 2. for $i = \ell 1$ down to 0 do
- 3. $z = z^2 \mod n$
- 4. if $b_i = 1$ then
 - $z = z \times x \mod n$

The square-and-multiply algorithm to compute $x^b \mod n$

2013/08/02

Wireless Communication Engineering I





- 2. Bob computes n = pq and $\phi(n) = (p-1)(q-1)$
- 3. Bob chooses a random $b(1 < b < \phi(n))$ such that $gcd(b, \phi(n)) = 1$
- 4. Bob computes $a = b^{-1} \mod \phi(n)$ using the Euclidean algorithm
- 5. Bob publishes *n* and *b* in a directory as his public key.

Setting up RSA

2013/08/02

Wireless Communication Engineering I

22

20

ElGamal Cryptosystem and Discrete Logs

Problem Instance $I = (p, \alpha, \beta)$, where p is prime, $\alpha \in \mathbb{Z}_p$ is a primitive element, and $\beta \in \mathbb{Z}_p^*$.

Objective Find the unique integer $a, 0 \le a \le p - 2$ such that

 $\alpha^a \equiv \beta (\mathrm{mod} \ p)$

Wireless Communication Engineering I

We will denote this integer *a* by $\log_{\alpha} \beta$.

2013/08/02

Let *p* be a prime such that the discrete log problem in Z_p is intractable, and let $\alpha \in Z_p^*$ be a primitive element. Let $P = Z_p^*, C = Z_p^* \times Z_p^*$, and define $K = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}$ The values *p*, α and β are public, and *a* is secret. For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in Z_{p-1}$, define $e_K(x, k) = (y_1, y_2)$

Wireless Communication Engineering I

where $y_{1} = \alpha^{k} \mod p$ and $y_{2} = x\beta^{k} \mod p$ For $y_{1}, y_{2} \in Z_{p}^{*}$, define $d_{K}(y_{1}, y_{2}) = y_{2}(y_{1}^{a})^{-1} \mod p$ 2010

Let *G* be a generating matrix for an [n, k, d] Goppa code **C**, where $n = 2^m$, d = 2t + 1 and k = n - mt. Let *S* be a matrix that is invertible over Z_2 , let *P* be $n \times n$ an permutation matrix, and let G' = SGP. Let $P = (Z_2)^k$, $C = (Z_2)^n$, and let $K = \{(G, S, P, G')\}$ where *G*, *S*, *P*, and *G'* are constructed as described above. *G'* is public, and *G*, *S*, and *P* are secret. For K = (G, S, P, G'), define $e_K(\mathbf{x}, \mathbf{e}) = \mathbf{x}G' + \mathbf{e}$

McEliece Cryptosystem

2013/08/02

2013/08/02

Wireless Communication Engineering I

26

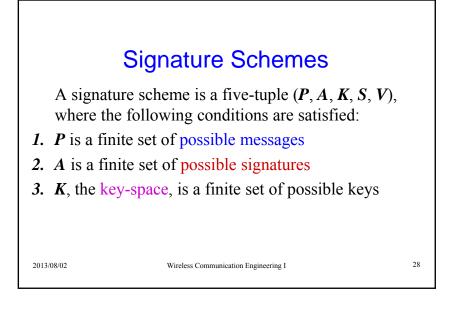
24

where $\mathbf{e} \in (\mathbb{Z}_2)^n$ is a random vector of weight *t*. Bob decrypts a ciphertext $\mathbf{y} \in (\mathbb{Z}_2)^n$ by means of the following operations:

Wireless Communication Engineering I

- 1. Compute $\mathbf{y}_1 = \mathbf{y}P^{-1}$.
- 2. Decode \mathbf{y}_1 , obtaining $\mathbf{y}_1 = \mathbf{x}_1 + \mathbf{e}_1$, where $\mathbf{x}_1 \in \mathbf{C}$.
- 3. Compute $\mathbf{x}_0 \in (\mathbf{Z}_2)^k$ such that $\mathbf{x}_0 G = \mathbf{x}_1$.
- 4. Compute $\mathbf{x} = \mathbf{x}_0 S^{-1}$.

2013/08/02

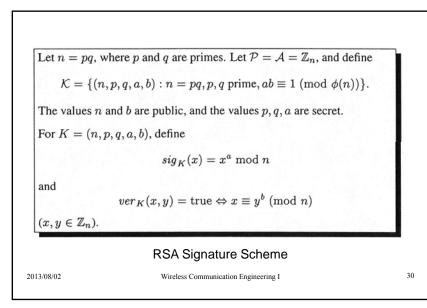


4. For each K ∈ K, there is a signing algorithm sig_K ∈ S and a corresponding verification algorithm ver_K ∈ V. Each sig_K: P → A and ver_K : P × A → {true, false} are functions such that the following equation is satisfied for every message x ∈ P and for every signature y ∈ A:

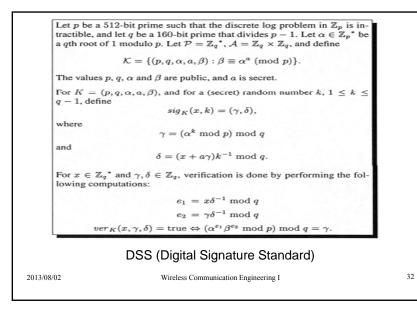
$$ver(x, y) = \begin{cases} true & if \quad y = sig(x) \\ false & if \quad y \neq sig(x) \end{cases}$$

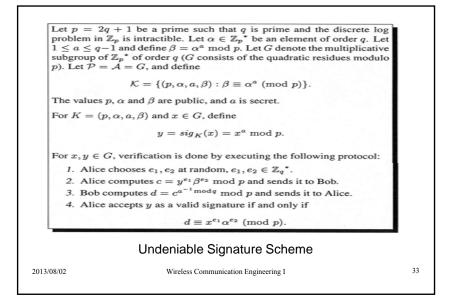
Wireless Communication Engineering I

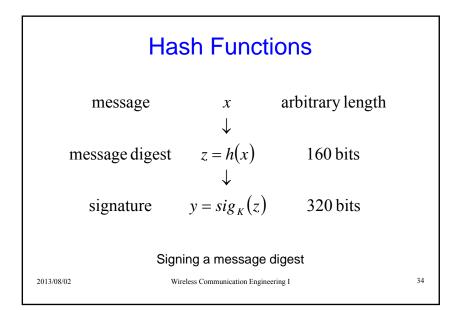
2013/08/02



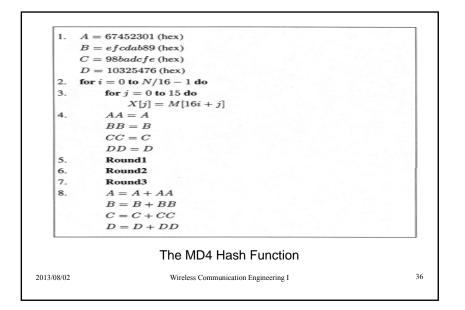
Let p be a prime such that the discrete log problem in
$$\mathbb{Z}_p$$
 is intractable,
and let $\alpha \in \mathbb{Z}_p^*$ be a primitive element. Let $\mathcal{P} = \mathbb{Z}_p^*, \mathcal{A} = \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$,
and define
 $\mathcal{K} = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}.$
The values p, α and β are public, and a is secret.
For $\mathcal{K} = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}^*$,
define
 $sig_K(x, k) = (\gamma, \delta)$,
where
 $\gamma = \alpha^k \mod p$
and
 $\delta = (x - a\gamma)k^{-1} \mod (p - 1).$
For $x, \gamma \in \mathbb{Z}_p^*$ and $\delta \in \mathbb{Z}_{p-1}$, define
 $ver_K(x, \gamma, \delta) = true \Leftrightarrow \beta^{\gamma}\gamma^{\delta} \equiv \alpha^x \pmod{p}.$
EIGamal Signature Scheme





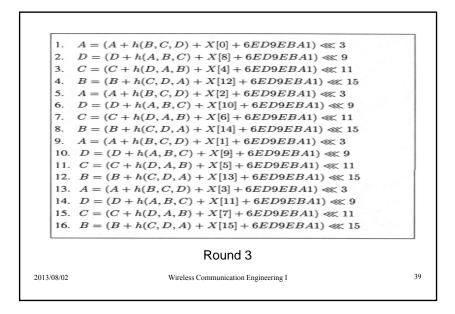


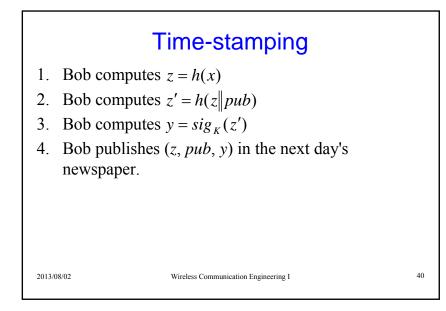
Suppose p is a large prime and q = (p - 1)/2 is also prime. Let α and β be two primitive elements of \mathbb{Z}_p . The value $\log_{\alpha} \beta$ is not public, and we assume that it is computationally infeasible to compute its value. The hash function $h: \{0, \dots, q - 1\} \times \{0, \dots, q - 1\} \rightarrow \mathbb{Z}_p \setminus \{0\}$ is defined as follows: $h(x_1, x_2) = \alpha^{x_1} \beta^{x_2} \mod p.$ Chaum-van Heijst-Pfitzmann Hash Function 2013/08/02 Wireless Communication Engineering 1

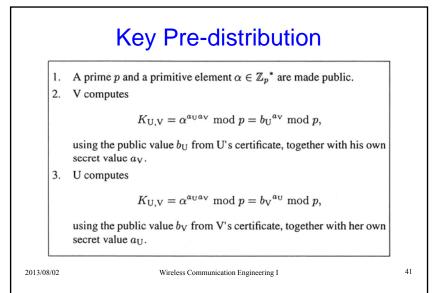


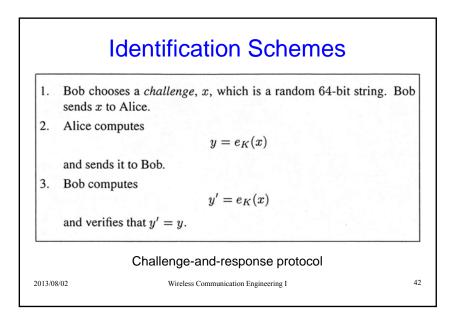
3/08/02	Wireless Communication Engineering I	
	Round 1	
16.	$B = (B + f(C, D, A) + X[15]) \lll 19$	
15.	$C = (C + f(D, A, B) + X[14]) \lll 11$	
14.	$D = (D + f(A, B, C) + X[13]) \lll 7$	
	$A = (A + f(B, C, D) + X[12]) \ll 3$	
	$B = (B + f(C, D, A) + X[10]) \ll 19$	
	$D = (D + f(A, B, C) + X[9]) \lll 1$ $C = (C + f(D, A, B) + X[10]) \lll 11$	
	$A = (A + f(B, C, D) + X[8]) \lll 3$ $D = (D + f(A, B, C) + X[9]) \lll 7$	
1 m m	$B = (B + f(C, D, A) + X[7]) \lll 19$	
	$C = (C + f(D, A, B) + X[6]) \lll 11$	
	$D = (D + f(A, B, C) + X[5]) \lll 7$	
5.	$A=(A+f(B,C,D)+X[4])\lll 3$	
4.	$B=(B+f(C,D,A)+X[3])\lll 19$	
3.	$C = (C + f(D, A, B) + X[2]) \lll 11$	
2.	$D = (D + f(A, B, C) + X[1]) \lll 7$	

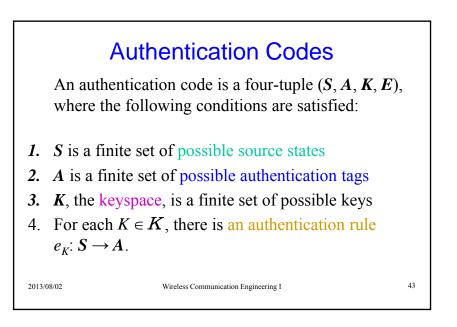
16.	$B = (B + g(C, D, A) + X[15] + 5A827999) \lll 13$ Round 2	
	$C = (C + g(D, A, B) + X[11] + 5A827999) \lll 9$	
14.	$D = (D + g(A, B, C) + X[7] + 5A827999) \lll 5$	
13.	$A = (A + g(B, C, D) + X[3] + 5A827999) \lll 3$	
12.	$B = (B + g(C, D, A) + X[14] + 5A827999) \lll 13$	
11.	$C = (C + g(D, A, B) + X[10] + 5A827999) \lll 9$	
	$D = (D + g(A, B, C) + X[6] + 5A827999) \ll 5$	
	$A = (A + q(B, C, D) + X[2] + 5A827999) \ll 3$	
	$B = (B + q(C, D, A) + X[13] + 5A827999) \ll 13$	
	$C = (C + g(D, A, B) + X[9] + 5A827999) \ll 9$	
	$D = (D + q(A, B, C) + X[5] + 5A827999) \ll 5$	
	$B = (B + g(C, D, A) + X[12] + 5A827999) \lll 13$ $A = (A + g(B, C, D) + X[1] + 5A827999) \lll 3$	
	$C = (C + g(D, A, B) + X[8] + 5A827999) \lll 9$ $B = (B + g(C, D, A) + X[12] + 5A827999) \lll 13$	
	$A = (A + g(B, C, D) + X[0] + 5A827999) \lll 3$ $D = (D + g(A, B, C) + X[4] + 5A827999) \lll 5$	

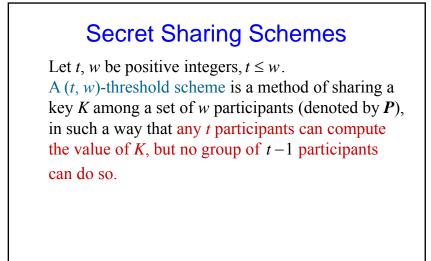








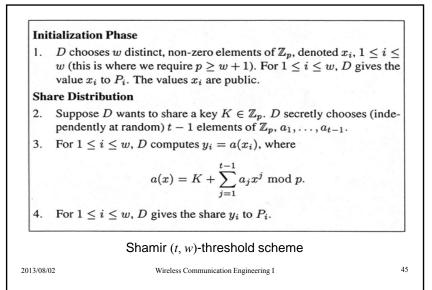




2013/08/02

Wireless Communication Engineering

44



Pseudo-random Number Generation

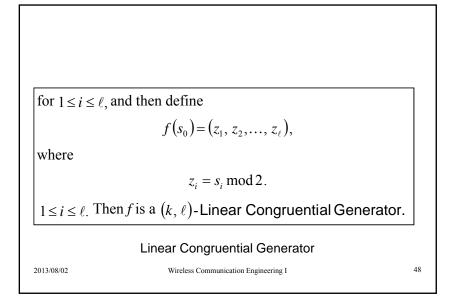
Let k, ℓ be positive integers such that $\ell \ge k+1$ (where ℓ is a specified polynomial function of k). A (k, ℓ) -pseudo - random bit generator (more briefly, a (k, ℓ) -PRBG) is a function $f: (Z_2)^k \to (Z_2)^\ell$ that can be computed in polynomial time (as a function of k). The input $s_0 \in (Z_2)^k$ is called the seed, and the output $f(s_0) \in (Z_2)^\ell$ is called a pseudo-random bit-string.

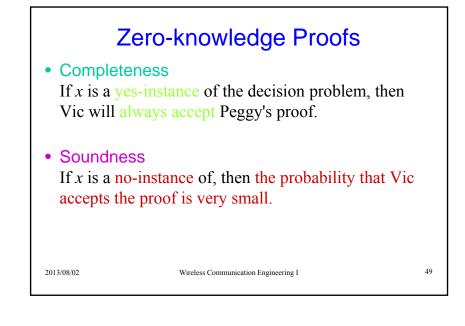
Let $M \ge 2$ be an integer, and let $1 \le a, b \le M - 1$. Define $k = \lceil \log_2 M \rceil$ and let $k + 1 \le \ell \le M - 1$. For a seed s_0 , where $0 \le s_0 \le M - 1$, define $s_i = (as_{i-1} + b) \mod M$

2013/08/02

Wireless Communication Engineering I

46





Input: an integer n with unknown factorization n = pq, where p and q are prime, and x ∈ QR(n)
1. Repeat the following steps log₂ n times:
2. Peggy chooses a random v ∈ Z_n* and computes y = v² mod n.
Peggy sends y to Vic.
3. Vic chooses a random integer i = 0 or 1 and sends it to Peggy.

2013/08/02

Wireless Communication Engineering I

4. Peggy co	mputes
	$z = u^i v \bmod n,$
where <i>u</i> is	s a square root of x , and sends z to Vic.
5. Vic check	ts to see if
	$z^2 \equiv x^i y \pmod{n}.$
-	Its Peggy's proof if the computation of step 5 is n each of the $\log_2 n$ rounds.
A perfe	ct zero-knowledge interactive proof system for Quadratic Residues
2013/08/02	Wireless Communication Engineering I

