Multi-user Communications

Agenda

- Multiple-Access Technique
- Capacity of Multiple Access
- · Random Access Methods

2013/07/19

Wireless Communication Eng. I

Multiple Access Techniques

- 1. A common communication channel is shared by many users.
 up-link in a satellite communication, a set of
 - terminals \rightarrow
 - a central computer, a mobile cellular system
- 2. A broadcast network down-links in a satellite system, radio and TV broadcast systems
- 3. Store-and-forward networks
- 4. Two-way communication systems

2013/07/19 Wireless Communication Eng. I

- -FDMA (Frequency-division Multiple Access)
- -TDMA (Time-division Multiple Access)
- -CDMA (Code-division Multiple Access): for burst and low-duty-cycle information transmission

2013/07/19

Spread spectrum signals → small cross-correlations For no spread random access, collision and interference occur.

Retransmission Protocol

2013/07/19

Wireless Communication Eng. I

Capacity of Multiple Access Methods

In FDMA, normalized total capacity $C_n = KC_K / W$ (total bit rate for all K users per unit of bandwidth)

$$C_n = \log_2\left(1 + C_n \frac{E_b}{N_0}\right)$$

where

W: Bandwidth

 E_b : Energy per bit

 N_0 : Noise power spectrum desity

2013/07/19

In TDMA, there is a practical limit for the transmitter power

In no cooperative CDMA,

$$C_n \le \log_2 e - \frac{1}{E_b/N_0}$$

2013/07/19

Wireless Communication Eng. I

Code-Division Multiple Access

- CDMA Signal and Channel Models
- The Optimum Receiver Synchronous Transmission Asynchronous Transmission

2013/07/19

Sub-optimum Detectors
 Computational complexity grows linearly
 with the number of users, K.
 Conventional Single-user Detector
 Near-far problem
 Decorrelation Detector
 Minimum Mean-Square-Error Detector
 Other Types of Detectors

- Performance Characteristics of Detectors

12

2013/07/19 Wireless Communication Eng. I

Random Access Methods

 ALOHA Systems and Protocols Channel access protocol Synchronized (slotted) ALOHA Unsynchronized (un-slotted) ALOHA Throughput for slotted ALOHA

2013/07/19 Wireless Communication Eng.

Packet Transmission

• Poisson Point Process: The start time of packets

• Average rate : λ [packets/s]

• Time duration of a packet : Tp

• Offered channel traffic : $G=\lambda Tp$

2013/07/19 Wireless Communication Eng. 1

ommunication Eng. 1

Throughput Performance

• Unsynchronized random access:

S=Gexp(-2G)

Smax=1/(2e)=0.184(packets/slot) @G=1/2

• Slotted ALOHA:

S=Gexp(-G) for $K\to\infty$

p-persistent CSMA

Smax=1/e=0.368(packets/slot) @G=1

2013/07/19

Wireless Communication Eng. I

16

2013/07/19

Wireless Communication Eng. I

Nonpersistent CSMA

- (a) If the channel is idle, the user transmits a packet.
- (b) If the channel is sensed busy, the user schedules the packet transmission at a later time according to some delay distribution. At the end of the delay interval, repeats steps(a) and (b).

2013/07/19

1-persistent CSMA

- (a) If the channel is sensed idle, the user transmits the packet with probability 1.
- (b) If the channel is sensed busy, the user waits until the channel becomes idle and transmits a packet with probability one. Note that in this protocol, a collision will always occur when one user has a packet to transmit.

2013/07/19 Wireless Communication Eng. I 20

p-persistent CSMA

- (a) If the channel is idle, the packet is transmitted with probability p, and with probability 1-p the transmission is delayed by τ .
- (b) If at t=\tau, the channel is still sensed to be idle, step (a) is repeated. If a collision occurs, the user schedules retransmission of the packets according to some preselected transmission delay distribution.
- (c) If at t=\tau, the channel is sensed busy, the user waits until it becomes idle, and then operates as in (a) and (b) above.

2013/07/19 Wireless Communication Eng. I

 $\begin{array}{c} \text{a=0} \\ \text{o.s.} \\$

Memory Effect in Power Amplifiers • Nonlinearity of PA

- Modeling of Nonlinearity
- Intermodulation, EVM, ACPR
- Distortion Compensation
- High Efficient PA

2013/07/19 Wireless Communication Eng. I

Outline

- · Introduction
- · Signals, behavioral models, and memory effects
- · Impact of decresting and truncating realistic signals
- · Measurement based predictions of digital predistortion
 - memoryless compensation
 - deterministic memory effect compensation
- · Examples of RF power amplifiers
- Conclusions

Wireless Communication Eng. I 2013/07/19

Signals and Memory Model **Transfer Functions**

Goal: To obtain a transfer function or an impulse response for the RF envelope.

Procedure: Use different test signals to extract the circuit performance over the stimulus parameter space.

CW signals

- · Shaped RF envelopes
- Parameterized CW Multi-sine generated
- Two tone
- Realistic truncated waveforms

Perturbation techniques:

Small signal expansion about large signal state

Shaped RF Envelopes

Envelope Domain:

- · Square waveforms
- Triangle waveforms
- · Greater spectral richness
- Expanded exploration of internal states
 - Bias
 - Thermal
 - Others

Normalized Waveform RMS Error

- Over all sample points, n, of a single measurement:
 - Normalize average power of signals to unity: x_a, y_a
- Generate the rms difference between the normalized vectors

$$\underline{x}_{\alpha} = \frac{\sqrt{2} \cdot \underline{x}}{\sqrt{\frac{\sum_{n} (x_{0}^{2})}{n}}}$$

$$\underline{y}_{\alpha} = \frac{\sqrt{2} \cdot \underline{y}}{\sqrt{\frac{\sum_{n} (y_0^2)}{n}}}$$

$$EVM_{rms} = \sqrt{\frac{\sum_{n} (|y_{\alpha} - x_{\alpha}|^{2})}{n}}$$

2013/07/19

Take two measurements of the same, production qualified, exploration waveform:

- · First measurement sets the expected gain characteristics (memoryless impact)
- Second measurement is used to roughly estimate the non-deterministic memory effect (more than 2 improves accuracy).

2013/07/19

DPD Projections

- Original input: xI(n)
- Original output: vI₁(n)
- Second output: vI₂(n)
- Amplifier gain: G_n(xI_n)
- Expected gain: G(xI_n)

Memoryless DPD

- DPD input: xpI(n)
- Projected output: ypIe(n)

Memory Mitigation DPD

- DPD input: xppI(n)
- Projected output: $yppI_e(n)$ $yppI_n \approx G_0 \cdot xI_n + Noise$

 $yI_1(n) = G_n(xI_n) \cdot xI(n)$

$$G(xI_n) = E(G_n(\underline{xI}_n)|xI_n)$$

$$G(xI_n) = E(G_n(\underline{xI}_n)|xI_n)$$

$$yI_n - G(xI_n) \cdot xI_n = Mem + Noise$$

Noise
$$\approx \frac{|yI_1(n) - yI_2(n)|}{2}$$

$vpI_n \approx G_0 \cdot xI_n + Mem + Noise$

2013/07/19

Ensemble Input/Output RMS Error

- Perform an ensemble average over many measurements: E{.}
- · Over all sample points: n
 - Normalize average power of both signals to unity: x_a, y_a
- Generate the rms difference between the normalized vectors

2013/07/19

$$\underline{x}_{0} = E\{\underline{x}\}, \underline{y}_{0} = E\{\underline{y}\}$$

$$\underline{x}_{\alpha} = \frac{\sqrt{2} \cdot \underline{x}_{0}}{\sqrt{\sum_{n} (x_{0}^{2})}}$$

$$\underline{y}_{\alpha} = \frac{\sqrt{2} \cdot \underline{y}_{0}}{\sqrt{\sum_{n} (y_{0}^{2})}}$$

$$EVM_{rms} = \sqrt{\frac{\sum_{n} (|y_{\alpha} - x_{\alpha}|^{2})}{n}}$$

Contraction approximation $y'_{n} = G_{n}(\underline{xp}_{n})xp_{n} \quad \text{Input /Output Equation}$ $G(xp_{n}) = E(G_{n}(\underline{xp}_{n})) \quad \text{Memoryless gain:}$ $expected gain for a given x_{n}$ $expected gain for a given x_{n}$ Partitions of IO Equation Mem: repeatable Noise: random $xp_{n}^{i} = xp_{n}^{(i-1)} - \Delta x_{n}^{(i-1)} \quad xp_{n}^{i} \text{ correction equation}$ $\Delta x_{n}^{(i-1)} = \frac{\alpha \cdot e_{c}^{(i-1)}}{G_{n}(\underline{xp}_{n}^{(i-1)})} \quad \text{? x adjustment equation}$ Note: similarities to \$LMS\$ algorithm

	Nitronex Amplifier Results: GaN HFETs in ET System							
	Gain	Po	DE	PAE	EVM	ACLR1	ACLR2	
	(dB)	(W)	(%)	(%)	(%)	(dBc)	(dBc)	
Spec.		20			7	45	50	
		min						
Before	10.3	36.5	51.7	49.3	12.1	-32	-41	
After ML DPD	10	37.2	53.4	50.7	1.74	-48	-53	
After					New Sollar	500 SEAS	1185 mars	
Memory DPD	-	-	-	-	0.7	-52	-58	

<u>Summary</u>

- Reviewed aspects of the relationship between waveform selection, behavioral modeling and the resulting impact on memory effect observation / modeling.
- Highlighted the Ensemble CCDF Variation plot to help qualify test and evaluation waveforms.
- Introduced a measurement based algorithm to estimate the limits of memoryless and memory digital predistortion.
- Highlighted two envelope tracking measurement examples were these techniques have been applied.

2013/07/19