Energy Band (Tight-Binding Approximation)

LCAO-MO of a one-dimensional polymer

$$
\begin{array}{lllll}
\chi_{1} & \chi_{2} & \chi_{3} & \chi_{4} & \chi_{5}
\end{array}
$$

$$
\varphi=\sum_{n} c_{n} \chi_{n}
$$

The secular equation is

$$
\underbrace{\left\lvert\, \begin{array}{ccc}
\alpha-E & \beta & 0 \\
\beta & \alpha-E & \beta \\
0 & \beta & \alpha-E
\end{array}\right.}_{N \times N \text { 次 }} \quad \cdots . . . \mid
$$

We can directly solve this, but we use another way:

$$
\phi=\sum_{n} c_{n} \chi_{n}
$$

translation by one unit cell, $\boldsymbol{r} \rightarrow \boldsymbol{r}+\boldsymbol{a}$
should not change the physics, because it only changes the atom number.
So the electron density $\rho=\phi^{*} \phi$ does

not change. Accordingly, $c_{n+1}{ }^{*} c_{n+1}=c_{n}{ }^{*} c_{n}$
or only the phase of c_{n} may change. Thus, we can put
$c_{n+1}=c_{n} e^{i \theta}=c_{n} e^{i k a}$, Consequently ϕ is:

$$
\begin{aligned}
\phi & =c_{0}\left[\chi_{0}+e^{i k a} \chi_{1}+e^{i 2 k a} \chi_{2}+e^{i 3 k a} \chi_{3}+e^{i 4 k a} \chi_{4}+\ldots .\right] \\
& =c_{0} \sum_{n} e^{i n k a} \chi_{n}
\end{aligned}
$$

(Bloch function)
c_{0} is mere a normalization constant.

$$
\begin{aligned}
& \text { Energy of } \phi=\sum e^{i n k a} \chi_{n} \quad \text { is } \\
& E=\frac{\int \phi^{*} H \phi d \tau}{\int \phi^{*} \phi d \tau}=\frac{\int\left(\sum_{m} e^{-i m k a} \chi_{m}^{*}\right) H\left(\sum_{n} e^{i n k a} \chi_{n}\right) d \tau}{\int\left(\sum_{m} e^{-i m k a} \chi_{m}^{*}\right)\left(\sum_{n} e^{i n k a} \chi_{n}\right) d \tau} \\
& =\frac{\sum_{n} \sum_{m} e^{i(n-m) k a} \int \chi_{m}^{*} H \chi_{n} d \tau}{\sum_{n}^{m} \sum_{m} e^{i(n-m) k a} \int \chi_{m}^{*} \chi_{n} d \tau} \\
& n \\
& =\frac{N\left(e^{i k a} \beta+\alpha+e^{-i k a} \beta\right)}{N} \\
& E=\alpha+2 \beta \cos k a
\end{aligned}
$$

$E=\alpha+2 \beta \cos k a$

Owing to the periodicity, we only consider
($\quad \begin{aligned}-\pi<k a<\pi \\ \text { or } \\ \text { or }\end{aligned}$)

(2) Owing to $\beta<0$,
$\begin{array}{ll}\text { Maximum of } E \text { is (at } k=\pi / a) & E=(\quad) \\ \text { Minimum of } E \text { is (at } k=0) & E=(\quad)\end{array}$
(3) As a whole, the energy band has the bandwidth,

$E=\alpha+2 \beta \cos k a$

$$
\phi=\sum_{n} e^{i n k a} \chi_{n}
$$

(4) Make a ring.
(Otherwise, "edge state"

appears.)

When the total atoms are N, N-the atom $=0$-th atom, so
$e^{i N k a}=1 \rightarrow N k a=2 \pi n \quad(n$: integer $) k=(\quad) \begin{aligned} & \text { Periodical } \\ & \text { boundary }\end{aligned}$
boundary condition

Very fine for large N.
\rightarrow Nearly continuous (Energy band)

$E=\alpha+2 \beta \cos k a$

(5) $\phi=\sum e^{\text {inka }} \chi_{n}$
$k=0$ leads to $\quad \phi=\chi_{0}+\chi_{1}+\chi_{2}+\chi_{3}+\ldots$.
$k=\pi / a$ leads to

$$
\begin{aligned}
& \phi=\chi_{0}+\chi_{1}+\chi_{2}+\chi_{3}+\ldots . \\
& \phi=[
\end{aligned}
$$

All intervals have nodes.

\rightarrow Completely antibonding

Completely bonding
The state next to $k=0$ has extra $e^{i \frac{2 \pi}{N}} \quad$ phase. When rotated around the solid, the phase shifts by 2π. So the whole solid has only one node.
(8) For $2 N$ electrons

$$
2 \frac{2 k_{\mathrm{F}}}{\frac{2 \pi}{N a}}=2 N \rightarrow k_{\mathrm{F}}=()
$$

All states are occupied I

Two electrons, \uparrow and \downarrow, enter in one atomic orbital χ.
(9) For $N=6$

π orbitals (Hückel method) for benzene
Similarly, we can calculate Hückel molecular orbitals for N-carbon rings.

Cyclopentadienyl anion (right) is pentagon
and has delocalized negative charge.
Calculate the energy levels from the
equation of the tight-binding band, $E=\alpha+2 \beta \cos k a$.
(1) When $N=5, k$ takes the values of $0, ~ \pm \mathrm{A}, ~ \pm \mathrm{B}$. Show A and B .
(2) Obtain the energy levels.
Use $\cos (2 \pi / 5)=\cos 72^{\circ}=0.309, ~ \cos (4 \pi / 5)=\cos 144^{\circ}=-0.809$
(3) Calculate energies of the anion, the radical and the cation.

Free electron approximation

(1) Simple free electron approximation derived from the first principle of quantum mechanics.
(2) Electrons in metals, particularly the energy and momentum distribution, are investigated starting from a large number of free electrons.
(3) Distribution of electrons at finite temperatures are discussed in view of the Fermi statistics:
statistical mechanics.

Wave number $k=2 \pi / \lambda$ is inverse of the wavelength.
The number of waves in unit $\times 2 \pi$ length.
$E=\frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2 m}+V$ in three dimension.
Schrödinger equation is,
$\left[-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V\right] \phi=E \phi$
Eigenfunction (solution) for $V=0$ is $\phi(x, y, z)=e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}$
Eignevalue (energy) is $E=($

We cannot depict k_{z} at the same time.

Instead of an infinite space, consider a box with a finite length L, and the $x=L$ edge is connected to $x=0$.
\bigcirc (Otherwise, the edge generates a
"surface" state.)
$\phi(x+L, y, z)=\phi(x, y, z)$

$$
e^{i k_{x} L}=1 \rightarrow k_{x} L=2 \pi n \rightarrow k_{x}=(\quad)
$$

(n : integer)
Similarly for y, z,
$k_{x}=\frac{2 \pi}{L} n_{x} \quad k_{y}=\frac{2 \pi}{L} n_{y} \quad k_{z}=\frac{2 \pi}{L} n_{z}$
(Consider a cube with L edges.)

Interval of energy levels
\rightarrow continuous for large L.
\rightarrow Energy band

Fill N electrons according to the Pauli's exclusion principle.
Starting from the origin with the minimum energy, to the inside of a sphere with radius $k=\sqrt{ } k_{x}{ }^{2}+k_{y}^{2}+k_{y}^{2}$

Volume of a sphere with radius k is

One energy level has two electrons with \uparrow and \downarrow spins

Electron with the highest energy
(Fermi energy) is
$k_{\mathrm{F}}{ }^{2}=k_{x}^{2}+k_{y}^{2}+k_{y}^{2}$ $E_{\mathrm{F}}=\frac{\hbar^{2}}{2 m} k_{\mathrm{F}}^{2}=\frac{\hbar^{2}}{2 m} \times(\square)$
is solved as for N to give,

$$
N=\frac{V}{3 \pi^{2}} \times(
$$

Differentiate as for E, and the number of energy levels per unit energy (density of states or states density) is

Another derivation of states density
Surface of the sphere
$2 \frac{4 \pi k^{2} d k}{\left(\frac{2 \pi}{L}\right)^{3}}=d N$

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \text { より } d E=\square
$$

$$
\begin{array}{r}
D(E)=\frac{d N}{d E}=2 \frac{4 \pi k^{2}}{\left(\frac{2 \pi}{L}\right)^{3}} \frac{1}{\frac{\hbar^{2} k}{m} d k}=\frac{V}{2 \pi^{2}} \frac{2 m}{\hbar^{2}} k=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \\
k=\left(\frac{2 m E}{\hbar^{2}}\right)^{\frac{1}{2}} \quad \text { The same } \\
\text { conclusion }
\end{array}
$$

