Lecture Schedule

Electronic structure of solids. Band structure of solids, and the practical applications.
I am ready to lecture the following items, from which some will be selected.

Soft Material by Takehiko Mori

(1) Fundamentals of quantum mechanics
(2) Atomic orbitals to molecular orbitals
(3) Extension of molecular orbitals to solids
(4) Free electron model

(5) Fermi Dirac statistics

(6) Tight-binding model

(7) Energy band

(8) Symmetry of crystals

(9) Transport properties of solids

(10) Physics of semiconductor devices
(11) Magnetism

(12) Electron correlation

(13) Organic electronics
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General representation of waves: @(X,t)=g@.e *

where, e'’ =cos O+ ising
For example, ac current is real part of I(x,t) = |Oe
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Real part at t=0 is:
1(x) = I000527z5]
Wave form:

Real part at x=0 is:
1(t) = [ 1cos2zmt )
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Phase = const. moves with the
velocity (from the exponent = 0)
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Angular frequency o= 2nv —

dxt) = ¢Oei(kx—cot)

] moves to the right. Wave number k=2n/)

)

/1L\

T

Quantum mechanics is derived from the following two theorems,
which represent duality of wave and particle.

1 (1) A wave with frequency v acts as a particle with energy
E=hv (=hw).

(1) Planck's photon — Black body
(2) Photoelectron

(2) A particle with momentum p acts as a wave with
wavelength A = h/p (de Broglie wave).

(1) Electron diffraction
(2) Line spectra of hydrogen atoms

Particle (Energy, Momentum)
Wave (Frequency, Wavelength)

his leads to the correspondence:

Back body

Light with frequency v has energy with integer times of E=h v .
“—= Photon with energy E=hv or E=hc/A.
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Energy scales visible light de Broglie wave
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General wave @(X,t)=¢g,e *  isdifferentiated by x,
to give
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Similarly differentiated by t, to give

E=hz»
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We can obtain p and E by differentiating ¢ by x and t, and
multiplying h/i (or ih).
We can replace p, E to differential operators:

o

ho .
R e E—oinh—
a

I X

2
= p—+V is inserted in Eq. (2), to give,
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When E is independent of time, ¢(X,t) = @(x)e " is
inserted in Eq. (3), to give,
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2m X Schrédinger equation

Egs. (1), (2), (4) have a form of [Differential operator M] =m ¢
and are differential equations as for ¢, which have solutions ¢
corresponding to particular m.

Thus the eigenvalue m (E & &) corresponds to

the eigenfunction ¢ (E & %)

Free electron for V=0
2 2

2m x?
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The corresponding eigenvalue is E ZOL > ]

i m

¢(X) = e'kx is an eigenfunction of E— = pg
i

at the same time.

The corresponding eigenvalue is [ Ak ]

The plane wave @(X)=€"* has momentum p= [ hk ]
21,2
and energy E =[ K
. 2m 2k2
(X)) = e " has momentum p= [ —hk ]and energy E =[ f
which proceeds in the opposite (negative k) direction, 2m
but has the same (absolute value of) momentum and energy.

], and is an eigenstate.

h .
Schrédinger eq. ———— ¢ = E¢ has an eigenfunction @(X) = e™
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Wave number k=27/A is inverse of the wavelength.
The number of waves in unitx 2 7t length.




Hydrogen-like atom
Schrodinger equation
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Go to polar coordinates (x,y,z) — (r, 6, @)
¢ =R (r)YIm (‘91¢) =Rp (r)®lm (e)q)m (¢)
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Radial part Angular part
The radial part follows the differential equation:

R 2dR2m Ze? |(|+1)
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R=0

=€ electron

Problem
When 1=0, show R(r) =e ¥ isasolution of
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r- rdr 47zgor r
and obtain & and E.
Solution p, R(r) e into the above equation, to give,
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R(r) = r'e “"is another solution at nonzero I.
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Other solutions at 1=0: p=2¢r :E r
0 12

25 R(r) < (2 - p)e ™"
3 R(r) < (6—6p+ p°)e ”'? l\
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Associated Laguerre polynomials 0
works to be 1s, 2s, 3s.. orthogonal o
1s, 2s, 3s orbitals have o

3s

() () () AL

nodes in the radial direction,

and the shape is ;
[ sphere]

Laguerre polynomials guarantees orthogonality of 1s, 2s, 3s orbitals,

but complicates molecular orbital calculations.
~They are not important in the usual distances of chemical bonds,
so that we neglect them to

¢ oc e7§rYIm (‘9’ ¢)

zZ . . . .
¢'=—increases as Z increases (and the orbital size decreases).

0
The "outer most electron” is screened by other "Z-1" electrons

from the Z+ nuclear charge.

If the screening is complete, it feels Z = 1 charge, but the screening
is incomplete, because the focused electron is not always out of
other electrons, so that the effective Z* is 1<Z*<Z.

Accordingly & changes as shown in the next page.
c(<JN<]o




Slater orbitals

-G .
- poce large orbital
) 3 1.6 A
25 Na 3s
1.2
2t N 28 3p
¢ / 1/408 "
1
1S Be 0.4f
0 0.0 v
0 10 20 0 10 20
Atomic number Atomic number small orbital

Due to the imperfect screening, going right leads to
[small ]atomic orbitals.
Covalent and ionic radii also become [ small ]

Angular part @ =Rui (r)Yim (6.,6) = R (1O (O)P 1 (#)
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Problem: Show ®;,(#)=cosé
is a solution of the above equation.

Put I=1, m—O and

1
—m% (sinésind) +2cosfd=0

2sindcos @
sing

This leadsto @ = Ry (1O (O)® 1 (#) o< re "2 cos @ oc 262

+2c0sf=0

Energy levels of a hydrogen atom
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Molecular orbital theory +7e H,O
(1) One-electron Schrodinger equation ® .€

2 2
4 e Z +e @ ® +e
N BV g 2T e=Ey
2m Arey, T T,
Put one electron in the arranged nuclei.

(2) LCAO-MO (Linear Combination of Atomic Orbitals)
NZ N : total number of atomic orbitals
P=2.C1,

[
*
B E= J #H My energy minimum ézo i=1-N
grpdr d:i
(4) Secular equation NxN Non diagonal: resonance integrals
a,—E e 0 ﬂij:JZiHZde
B a,-E
0 B

Qi = J xiHxydz
Diagonal: Energy level of i-th AO

]

(5) N-order equation of E

(6) N energy levels of E (BE# i)
l Simultaneous equation for c;
(7) N-set of c; (B B8 %) =Molecular orbital (5 FENE)

-e

Hydrogen Molecule @R

(2) LCAO-MO #=Caxa+CaIB
-

(4) Secular Eq.  |* Bl o

| p—ra=E é
(6) 0B iy A Antibonding
—Tt-PEIAAB W
a+B _H_ b= yn+ 1B / f Bonding

Stabilization due to the covalent bond is

2(a+B)—2a= [2 B ]
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— Electronically negative atom




Energy of Atomic Orbital « ,= lonization energy
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Due to the imperfect screening, going right leads to
[Iarge]ionization energy, and [deep] atomic orbital.
Going right leads to electronically negative.
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Diatomic molecule like N, A -
+Ze e

N 1s+2s+2px3 — 5A0x2=10A0

p z
@ =Coie +CotetCaxos+Ca s +Csapz +CoXamz +C1 oy +CaXapy +Coopx +C10X o
1s 2s 2p, 2p, 2p,
A B A B A B A B A B
oqs— E Bis
Bis os— E
ay—E PBas
Bas a—E

an-E  fs 0 0 0 o |,

Bs @p-E 0 0 0 0

0 0 0

0 0

Electron configuration
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Bond order is[ 3 ] [ 5 ] [ 1 ]

Bond order = [(#Bonding orbital)—(#Antibonding orbital)]/2

7t -Electron System Hiickel Method
(1) o and 7 -orbitals are orthogonal.

o 0

0 Consider only this part.

(2) B for nearby C=C is nonzero. Others are zero.
(3) All overlap integrals are S=0.

Example ethylene Bonding energy is

I—kl_Z/H a—E B -0 T
H/C—QH B a-E 2(01+/3)—201—[2/3 }

@-B— $=ya—18 gg

a+p -H— d=xn+28 88




Hiickel Method for Complicated i -Electron Sytems

(1) Number carbon atoms with 7, the total is N.
(2) Wright a N x N secular equation, with all diagonal terms a —E

(3) Nondiagonal terms are 3 for bonded i-th and j-th carbons,
and zero for non bonded carbons.

(4) | determinant | =0 leads to N-th equation of E, which is solved
to obtain N energy levels.

(5) Put electrons from the bottom. (#Electron)=(#Carbon)

Wright the secular equation of cyclobutadiene.

Hi1 2 H a-E p 0 p
5 (S p—e—E——p—— 0

C—C_ 0 B a-E B |

H4 3H g 0 B aE

The solution is
v-28 —

a+23 -H— Bonding energy is
2(a+2B)t2a —4a = [4/3 }

There is no energy gain compared with two double bonds
2x23 =48

Wright the secular equation of benzene.

L a-E pB 0 0 0 B
a8 ? B a-E B 0O 0 0
5 3 0 B a-E B 0 0
4 0 o g at p ol
0 0 0 B a-E p
\ B 0 0 0 B a-E /
The solution  gonding energy is
a-23 — 2(a+2B)+4(a +/3)—6oz=£8/3 }
o-f == Compared with three doublebonds
T 3x2[B3 =68, thereis 2B energy gain
a+B (delocalization energy).
a+2p ‘[‘r 4n+2 membered ring delocalization aromatic

4n  membered ring no delocalization
(Huckel rule)




