# 線形電子回路 Linear Electronic Circuits

西原明法

**Akinori Nishihara** 

aki@cradle.

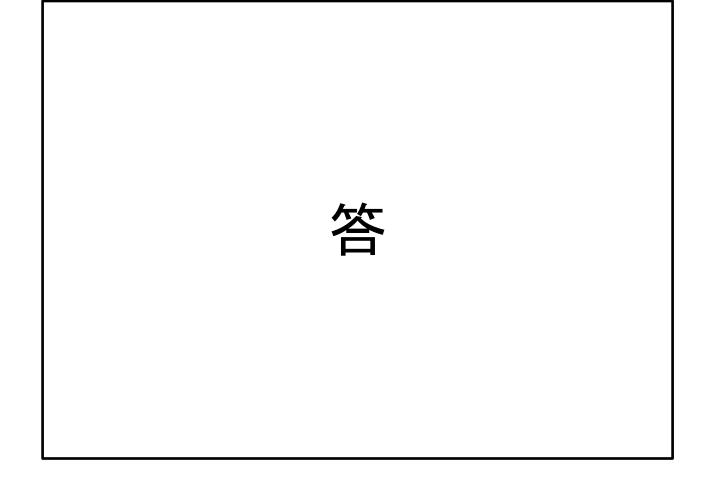
http://www.nh.cradle.titech.ac.jp/

## 線形電子回路学習の意義

#### 線形電子回路は

- 通信、制御、計測、レーダー、運輸
- ・放送、家電、AV、娯楽 等に幅広く利用される基盤技術

産業界からの強い要請


電子回路とは 電子部品を接続し、所望の機能を実現

# 線形電子回路学習の意義(続)

- より大きな「信号処理」という枠組みの一部
- アナログーディジタルの分担/協調
  - ディジタル処理: 処理の柔軟性、VLSI実現容易性
  - アナログ処理: 自然界/人間とのインタフェイス 高機能密度

## 質問

ディジタル携帯電話はどれくらいディジタルか?



## りくなびNEXT

2011年11月23日

職人的な技術力の高さ、一人前になるまでの年数の長さ、母数の少なさなどから、転職市場ではアナログ回路設計者の求人が高止まりしている。さらなるニーズの拡大は確実で、回路設計の「アナログ指向」は止まりそうにない。

http://rikunabi-next.yahoo.co.jp/01/closeup\_1150/index.html

# レガシーどころか実は最先端な アナログ電子回路

2009年8月3日 マイナビニュ<del>ー</del>ス

現代の電子回路技術では、アナログは最先端の技術です。 たしかに古くからアナログ回路技術を用いてラジオ、テレビ、 ステレオなどいろいろな電子製品が実用化されてきました。 一度レガシーになったかと思われるこのアナログ回路技術 が、高速通信や高速データ処理のような領域であらためて 見直されてきています。一番大きな理由は電子回路のハイ スピード(高速)化です。従来の単に1/0のデジタル信号でさ えも、ハイスピード化により、1から0、0から1に変化する間 隔(周期)が速いため、一定の変化時間では周期に対して 「鈍って(なまって)」見えてしまい、その結果、変化途中をア ナログ信号的に考える必要が出てきています。

http://news.mynavi.jp/series/analog\_circuit/001/index.html

## 講義予定

| 日付     | 題目               |
|--------|------------------|
| 10月2日  | 電子回路の応用分野        |
| 10月16日 | 増幅器モデルと周波数応答     |
| 10月23日 | 演算増幅器のモデル        |
| 10月30日 | ダイオードと非線形モデル     |
| 11月6日  | MOSFET           |
| 11月13日 | バイポーラトランジスタ(BJT) |
| 11月20日 | 集積回路設計           |
| 11月27日 | 演習               |
| 12月4日  | 中間試験             |
| 12月11日 | MOSFET集積回路設計     |
| 12月18日 | BJT集積回路設計        |
| 1月8日   | 差動対と演算増幅器        |
| 1月15日  | 帰還増幅器            |
| 1月22日  | 発振回路             |
| 1月29日  | 総合演習             |

## 講義の進め方

- 東工大OCWに掲載する講義資料に沿い、事前に
- http://elite.nh.cradle.titech.ac.jp/moodle/で学習しておく(IDとパスワード必要)
- ・授業では、上記に対する補足説明、質 疑、演習を中心に行う
- ・授業中に内容を習得しよう

### 講義の進め方と評価

- 宿題、中間試験、期末試験 宿題の提出は単位の十分条件ではない! 必要条件でもないが、成績には反映可能
- 質問は授業中、フィードバックシートの他、 随時受付けます
  - 電子メールで
  - 大岡山西9号館823号室 (電話3232)aki@cradle.電話か電子メールで予約する方がよい

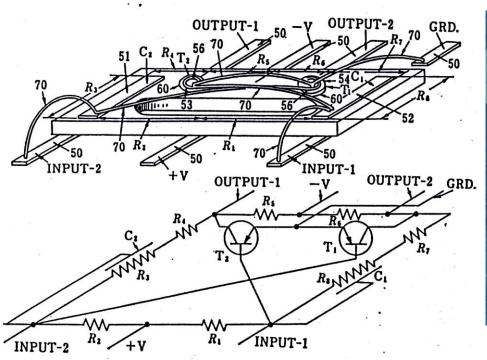
### 教科書

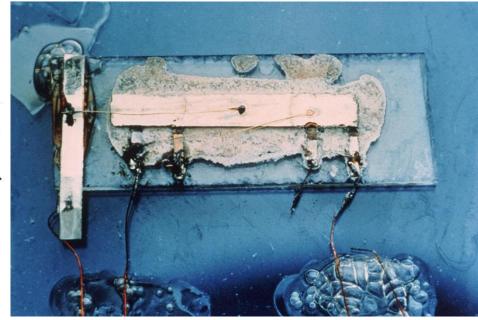
藤井信生著 アナログ電子回路 一集積回路化時代の一 昭晃堂

配布する講義資料は要点のみ詳細は教科書で!

### 回路シミュレーション

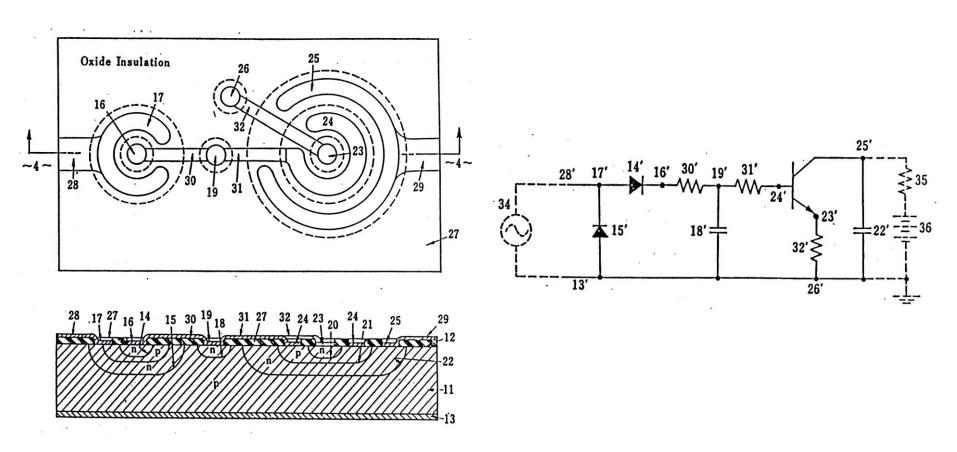
- 電子回路のシミュレーションにはSPICEが国際的にde facto standard
- 電子回路シミュレーションは設計現場では不可欠
- 各種のフリーSPICEがある


http://www.repairfaq.org/ELE/F\_Free\_Spice.html


### 電子回路の歴史

- 3極管の発明 1906年 Lee DeForest 増幅作用の発見は1912年
- トランジスタの発明 1947年 Walter Brattain
  John Bardeen
  William Shockley
  (1956年ノーベル賞)
- 集積回路の発明 1958年 Jack Kilby (2000年ノーベル賞)
   1959年 Robert Noyce

# Kilbyの特許


#### 集積回路(マルチバイブレータ)の構成と写真





Courtesy of Texas Instruments

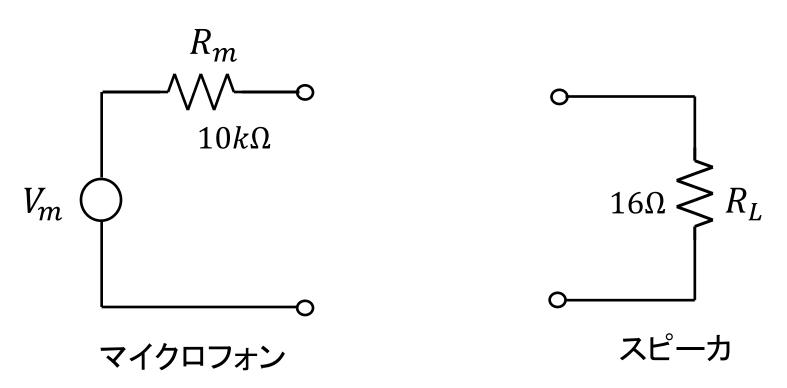
# Noyceの特許



集積回路(半導体デバイスと相互配線)の構成図

## 電子回路の応用

- 増幅器
- ディジタル回路
- 変復調
- フィルタ
- ・パワーエレクトロニクス


## 増幅器の概念

- センサ、アンテナ等から得られる信号は  $\mu V \sim m V$  程度)、 しなければ使えない
- 増幅器の仕様として と が重要
- ・入出カインピーダンスも同様に重要

## 増幅器の必要性

- マイクロフォン出力 数mV,数 $\mu A$ 程度
- 大出カスピーカ ピークで 程度
- ・ 直結しても音は出ない!!
- 電圧と電流を大きくすることが必要

### マイクロフォンとスピーカ



電気回路モデル

直結してもスピーカから音は出ない

## 必要な電圧利得

$$A_v = \frac{V_o}{V_m} = \frac{10V}{50mV} = 200 = 46dB$$

インピーダンスレベルの違いにも注目

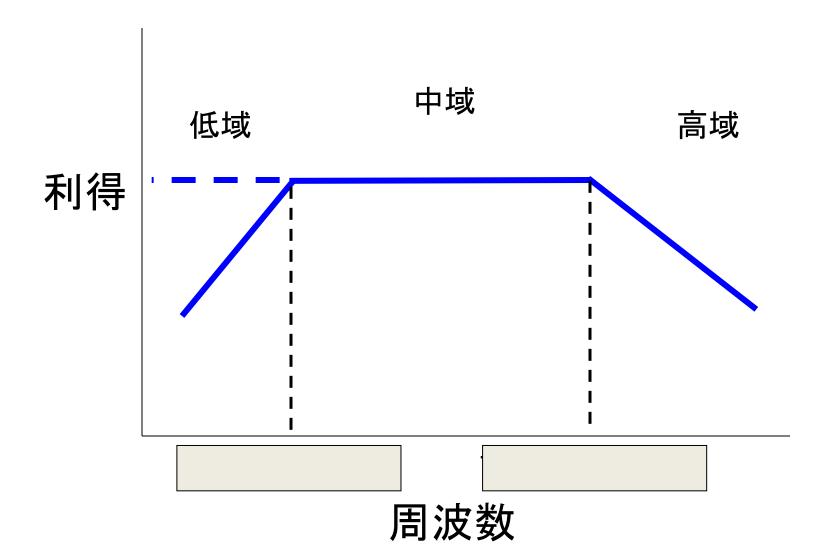
## 必要な電力利得

• マイクロフォンからの最大有能電力  $V_m = 50mV$ として

$$P_{mav} = \frac{V_m^2}{4R_m} = \frac{(50mV)^2}{4 \times 10k\Omega} = 62.5nW$$

• スピーカを駆動するのに必要な電力

$$P_{out} = \frac{{V_o}^2}{R_L} = \frac{10^2}{16} = 6.25W$$


・ 必要な電力利得

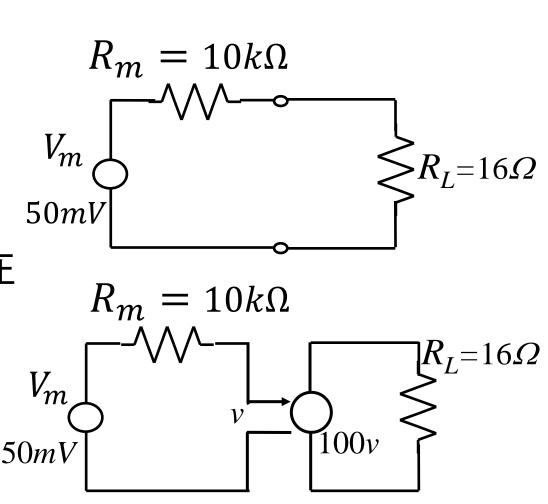
$$A_p = \frac{P_{out}}{P_{max}} = \frac{6.25W}{62.5nW} = 10^8 = 80dB$$

# 増幅器の必要性(2)

- ラジオ、TV、携帯電話等の無線信号μV程度
- コンピュータ等のディジタル回路
  - ひとつの論理回路出力を他の多くの論理回路に接続する場合
  - 出力電流を増幅

## 増幅器の周波数特性




### フィルタ

•周波数選択性

- •LCフィルタ
- ・圧電振動子フィルタ
- ・能動フィルタ

### 宿題1

- 右図のようにマイクロフォンとスピーカを直結した場合の、スピーカR<sub>L</sub>が消費する電力を求めよ。
- 途中に100倍の電圧 制御電圧源を挿入 した場合にR<sub>L</sub>が消 費する電力を求め よ。
- 3. 前2問の消費電力 の違いを考察せよ。

