Optical imaging and image processing (XI)

Masahiro Yamaguchi E-mail: yamaguchi.m.aa@m.titech.ac.jp http://guchi.gsic.titech.ac.jp Depth map

Shape data

Surface data

Stereography

Slice stack

Multi-view
Stereography

A stereography

7. 三次元画像とホログラフィー

- 7. Three-dimensional imaging and holography
- 7.1 Variations of 3-D information

Туре	Parameters	Amount of data
2D image	x, y, value	$N^2 \times L_b$
Depth map	x, y, depth	$N^2 \times L_d$
Shape data	x, y, z	3P × X
Surface data	x, y, z, reflectivity	$3P \times L_b \times X$
	x, y, z, color	
Slice stack	x, y, value, number	$N^2 \times L_b \times D$
Stereography	x, y, value, angle	$N^2 \times L_b \times M$
Volume data	x, y, z, value	$N^3 \times L_b$
Light-field	x, y, value, angle _x , angle _y	$N^2 \times L_b \times M^2$
Time-sequence	x, y, value, t	$N^2 \times T_3$

三次元画像工学、大越孝敬、朝倉書店 (1997)

7.2 3D display techniques

	Principle	Method	Depth-cues (Only important cues shown)
No parallax Single 2D image	Monocular depth-cue	Pictorial techniques	Overlapping, Linear Perspective Texture Gradient, Shades and Shadows, Aerial Perspective
		Large field of view Floating real-image	Display surface becomes unstable
No parallax Multiple 2D images		Motion picture Observer Tracking	Motion Parallax
Binocular stereogram Two 2-D images	Binocular parallax	Polarizing glasses, Anaglyph, Time-sequential, Goggle, Lenticular stereogram (binocular)	Binocular Parallax
Autostereoscopic 3D display (3D images)	Multi-view	Parallax panoramagram Lenticular sheet IP, Integral imaging	Binocular Parallax, Motion Parallax
	Depth sampling	Varifocal mirror LCD Stack	Binocular Parallax, Motion Parallax Accommodation, Convergence Difficult to reproduce overlapping effect
	light-ray or wavefront reconstruction	IP, Parallax barrier, High-density light-ray reproduction Holography	Binocular Parallax, Motion Parallax Accommodation, Convergence

Hologram

• Reconstructing wavefront of light wave

19

7.3 Holography

Wavefront recording and reconstruction using the light interference and diffraction

- Recording and reconstruction of wavefront
 - Recording and display of 3D image
 - Optical measurement
- Modification of the light propagation or the beam shape
 - Diffractive optical element, Holographic optical element
 - Optical information processing
- Light dispersion, wavelength selectivity
 - Optical element, diffraction grating, filter
 - 3D display with white light reconstruction
- High-density information recording, redundancy
 - Optical memory
- Combination of above features
 - Security printing (anti-counterfeit printing)

Reconstruction of real image

Recording of hologram

• Interference of two wavefronts

$$I(\mathbf{r}) = \langle | U_{Sc}(\mathbf{r}, t) + U_{Rc}(\mathbf{r}, t) |^2 \rangle$$

- Complex amplitude
 - Object wave $U_s(\mathbf{r}) = A(\mathbf{r}) \exp \{j \phi(\mathbf{r})\}\$
 - Reference wave $U_{R}(\mathbf{r}) = B \exp \{j k x \sin \theta\}$
- For coherent light

$$\begin{split} I(\mathbf{r}) &= \mid U_{\mathrm{S}}(\mathbf{r}) + U_{\mathrm{R}}(\mathbf{r}) \mid^{2} \\ &= \mid U_{\mathrm{S}}(\mathbf{r}) \mid^{2} + \mid U_{\mathrm{R}}(\mathbf{r}) \mid^{2} + U_{\mathrm{S}}(\mathbf{r}) \ U_{\mathrm{R}}(\mathbf{r})^{*} + U_{\mathrm{S}}(\mathbf{r})^{*} \ U_{\mathrm{R}}(\mathbf{r}) \\ &= A(\mathbf{r}) \mid^{2} + B \mid^{2} + A(\mathbf{r}) \ B \exp \left\{ j \left(\phi(\mathbf{r}) - kx \sin \theta \right) \right\} \\ &+ A(\mathbf{r}) \ B \exp \left\{ -j \left(\phi(\mathbf{r}) - kx \sin \theta \right) \right\} \end{split}$$

- Amplitude transmittance of recording medium
 - When it is linear to exposed light energy

$$T_A = T_0 + t_1 I(\mathbf{r})$$

21

22

Reconstruction of hologram

• Reconstructing wave $U(\mathbf{r}) = U_{R}(\mathbf{r}) T_{A}$

$$= t_1 U_{R}(\mathbf{r}) T_0 + t_1 U_{R}(\mathbf{r}) \{ |U_{S}(\mathbf{r})|^2 + |U_{R}(\mathbf{r})|^2 \}$$

$$+ t_1 U_{S}(\mathbf{r}) |U_{R}(\mathbf{r})|^2 + t_1 U_{S}(\mathbf{r})^* U_{R}(\mathbf{r})^2$$

$$= U_{0}'(\mathbf{r}) + U_{D}'(\mathbf{r}) + U_{C}'(\mathbf{r})$$

$$U_{\mathrm{D}}'(\mathbf{r}) = t_1 U_{\mathrm{S}}(\mathbf{r}) \mid U_{\mathrm{R}}(\mathbf{r}) \mid^2 = t_1 B^2 U_{\mathrm{S}}(\mathbf{r})$$

- → Object wave is reconstructed (Virtual image)
- Conjugate image reconstruction

$$U(\mathbf{r}) = U_{R}(\mathbf{r})^{*} T_{A}$$

$$= U_{0}"(\mathbf{r}) + U_{C}"(\mathbf{r}) + U_{D}"(\mathbf{r})$$

$$U_{D}"(\mathbf{r}) = t_{1} U_{S}(\mathbf{r})^{*} |U_{R}(\mathbf{r})|^{2}$$

$$= t_{1} B^{2} U_{S}(\mathbf{r}) = t_{1} B^{2} A(\mathbf{r}) \exp \left\{-j \phi(\mathbf{r})\right\}$$
(188)

→ Conjugate wave is reconstructed (Real image)

Applications of holography

- 3D display
 - Publishing, Security, Package, Interior, Advertisement, Education
 - Printing of 3D image data, Medical 3D displays
- Security Printing
 - Banknote (10k, 5k bills), Credit card, Package of digital media
- Optical measurement
 - Holographic interferometer
 - Shape, Motion, Vibration, Refractive index, birefrengence
 - Digital holography (using CCD cameras instead of photographic recording media)
- Optical information processing, Optical memory
 - Holographic matched filter, Holographic memory
- Holographic Optical Element (HOE)
 - Lens, Mirror, Diffuser, HUD, Projector, LCD
 - Screen, Dispersion element, Optical interconnection
 - Optical pickup, Scanner, Bar-code reader, Laser-beam printer, Beam shaping
- Imaging (Microscopy)
 - Electron holography, X-ray holography

24

Display holograms

- Laser reconstruction
 - Fresnel hologram
- White-light reconstruction
 - Image-type,
 - Rainbow hologram (1-step, 2-step),
 - Volume reflection hologram (Denisyuk hologram, Lippmann hologram)
- Holographic stereogram
- · Computer generated hologram
- Color holograms
 - Laser light reconstruction (RGB lasers)
 - White-light reconstruction
 - Rainbow-type, Volume-reflection type
 - Color holographic stereogram
 - Rainbow-type, Volume-reflection type

HUD(Head-up display)

- Features
 - Virtual image formation
 - Only the light of specific wavelength is reflected, others are transmitted. (High-transmittance)
 - Thin device (Sandwich between glasses)
- Substitution of concave half-mirror, Fresnel lens, and Dichroic mirror

Recording of holographic stereogram Horizontal parallax only (HPO)

Recording of hologram

33

Holographic printer

- Holographic stereogram
- Computer Generated Hologram (HOE)

Observation of holographic stereogram

29

Recording of full-parallax holographic stereogram

35

Electro-holography, Holographic TV

High-resolution spatial light modulator

- 3D electronic display using holography
- Wavefront reconstruction (CGH)
- Use of holographic stereogram technique
- Use of holographic optical element
- High-resolution image with the large range of depth