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2.1 NTU Characteristic Function

Definition 2.1.1.An NTU coalitional game(N, F,V) is given by

1. a set N of players,#N = n,

2. a set F of attainable outcomes, F⊆ <N, and

3. a correspondence V fromN = 2N into<N such that the followings are

satisfied for each S∈ N .

（a）V(S) is a nonempty closed subset of<N; and V(∅) = ∅.
（b）V(S) is comprehensive,i.e., if x∈ V(S) and y≤ x then y∈ V(S).

（c）If x ∈ V(S) and xi = yi ∀i ∈ S , then y∈ V(S)

（d）The set Q(S) ={x|x ∈ V(S), and x< int V({i}) ∀i ∈ S} is a nonempty,

bounded subset relative to the subspace<S; that is, there is a number

M such that xi ≤ M for all i ∈ S and all x∈ Q(S).

（e）F is closed, and∀x ∈ V(N), ∃y ∈ F with x≤ y.
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Remark 2.1.1.The set-valued functionV is called an NTU characteristic

function of a game (N, F,V).We will denote by (N,V) a game (N, F,V) where

F = V(N).

Definition 2.1.2.An NTU coalitional game(N, F,V) is superadditive iff

V(S) ∩ V(T) ⊆ V(S ∪ T), ∀S,T ⊆ N with S∩ T = ∅.

Definition 2.1.3.An NTU coalitional game(N, F,V) is convex iff

V(S) ∩ V(T) ⊆ V(S ∪ T) ∪ V(S ∩ T), ∀S,T ⊆ N.
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2.2 The Core

Definition 2.2.1.A coalition S can improve upon a payoff vector y iff there

is an x∈ V(S) such that xi > yi for all i ∈ S .

Definition 2.2.2.The core C(N, F,V) of a game(N, F,V) is the set of payoff

vectors in F that are not improved upon by any coalition, that is,

C(N, F,V) = F −
∪

S∈N\{∅}
int V(S)

Example 2.2.1.Let V be given by:N = {1,2,3}, 0 ≤ w < 1 and

V(N) = {u ∈ <N|u1 + u2 + u3 ≤ 2+ w}
V({i, j}) = {u ∈ <N|ui ≤ 1, and uj ≤ 1}, ∀i, j ∈ N, (i , j)

V({i}) = {u ∈ <N|ui ≤ w}, ∀i ∈ N.

Then the core is the set{(1,1,w), (1,w,1), (w,1,1)}, which is of course not

convex.
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2.2.1 Balanced Games and Scarf’s Theorem

Definition 2.2.3.A familyB of nonempty, proper subsets of N is balanced iff

there exist positive weights (balancing weights)δS for S ∈ B such that∑
S∈B, S3i

δS = 1 f or all i ∈ N

Definition 2.2.4.A game(N, F,V) is balanced iff for every balanced family

B, ∩
S∈B

V(S) ⊆ V(N).

Theorem 2.2.1.(Scarf [34, 1967]). The core of a balanced game is

nonempty.

The proof will be given in the last subsection 2.5 (Go To p.38).
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2.2.2 Market Games

Definition 2.2.5.An NTU market game is a coalitional game(N,V) defined

as follows: For each S⊆ N,

V(S) =
{
ū ∈ <N

∣∣∣∣ ∃x = (x1, . . . , xn) ∈
∏
i∈N
<m
+

s.t.
∑
i∈S

xi =
∑
i∈S

wi, andui(xi) ≥ ūi ∀i ∈ S
}

where wi ∈ <m
+ for all i ∈ N.

Theorem 2.2.2.An NTU market game derived from a convex economyE :

N→ Pco×<m
+ is balanced.

Here,Pco is the set of all convex preferences allowing continuous quasi-

concave utility functions. The convex economy means such an economy. See

the next section .
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Proof.Assume that ¯u ∈ ∩S∈BV(S). Then, for eachS ∈ B there is an alloca-

tion, say f S such thatf S(S) = w(S) andui( f S(i)) ≥ ū(i) for all i ∈ S. Define

the allocation

f (i) =
∑

S∈B,S3i
δS f S(i),

which is a convex combination off S(i), S ∈ B. By the convexity of prefer-

ences, we haveui( f (i) ≥ ūi for all i ∈ N. We have only to show thatf is a

redistribution forE. But,

f (N) =
∑
i∈N

∑
S∈B,S3i

δS f S(i) =
∑
S∈B
δS

∑
i∈S

f S(i)


=
∑
S∈B
δS

∑
i∈S

w(i)

 =∑
i∈N

w(i)

 ∑
S∈B,S3i

δS

 =∑
i∈N

w(i).

Hence,ū ∈ V(N). �
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2.3 The NTU Nucleolus

In this section, we review a theory of NTU nucleolus by Nakayama [30,

1982] which is a generalization of a TU nucleolus introduced as a point so-

lution to coalitional games by Schmeidler [35, 1969]. Another well-known

point solution which is also generalized to NTU games is the Shapley value

(Shapley [36, 1953]).*1

The TU nucleolus always uniquely exists and it is by definition in the

nonempty core. In a sense, it can be viewed as a way of ultimate ‘down-

sizing’ of the core. Thus, it may serve as a reference point when it is nec-

essary to single out a point from the core. It will turn out that our extension

preserves the existence and the inclusion in the NTU core. This is the reason

for reviewing the nucleolus here in the core analysis; the Shapley value will

be treated in a later proper occasion.

*1 A generalization to NTU games is found in Shapley [38, 1969]; Axiomatization of the NTU Value is due to Aumann [3, 1985].
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2.3.1 Nucleolus Share Ratios

Let (N, F,V) be an NTU coalitional game withF = V(N). For eachi ∈ N,

we assume without loss of generality that the setV({i}) is given byV({i}) =
{x ∈ <N |xi ≤ wi] with wi > 0.

Let A be an (n− 1)-simplex; namely

A =
{
a ∈ <N

∣∣∣∣ ∑
i∈N

ai = 1, ai ≥ 0 ∀i ∈ N
}
.

Maximization Problem P(a,S) givena ∈ A

maximize h

subject to the condition that

∃u ∈ V(S) ∀i ∈ S ui ≥ hai
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For eachS ⊆ N, let h(a,S) be the maximum ofh if it exists. The payoff

to each playeri ∈ N is given byh(a,N)ai via the problemP(a,N). A payoff

vector (h(a,N)a1, . . . , h(a,N)an) is individually rational if h(a,N)ai ≥ wi for

all i ∈ N. A point a ∈ A will be calleda share ratio.

Lemma 2.3.1.For each S⊆ N, P(a,S) has the optimal solution iff ai > 0

for some i∈ S .

Proof.The set{h ≥ 0| ∃u ∈ V(S) ∀i ∈ S ui ≥ hai} is nonempty and compact.

�

Definition 2.3.1.A share ratio a∈ A is individually rational iff

a ∈ AIR = {a ∈ A | h(a,N)ai ≥ wi ∀i ∈ N}.

Sincewi > 0 for all i ∈ N by assumption,h(a,S) is well-defined for all
11



a ∈ AIR andS ⊆ N.

Definition 2.3.2.The excess of coalition S under share ratio a∈ AIR is given

by

e(a,S) =
∑
i∈S

(
h(a,S) − h(a,N)

)
ai

where e(a,S) = 0 for S the empty set.

For eacha ∈ AIR, let θ(a) be the 2n-dimensional vector of excesses arranged

in the nonincreasing order, i.e.,

θ(a) = (θ1(a), . . . , θ2n(a))

where

θ j(a) ≥ θk(a) if j < k.

Definition 2.3.3.A share ratio a∗ ∈ AIR is said to be a nucleolus share ratio
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if it minimizesθ(a) in the lexicographical order. The payoff vector

(h(a∗,N)a∗1, . . . , h(a∗,N)a∗n)

where a∗ is a nucleolus share ratio is called an NTU nucleolus.*2

Theorem 2.3.1.(Schmeidler [35, 1969])Every TU coalitional game has a

unique nucleolus.

Proof.Existence is proved in the next subsection. For uniqueness, see

Schmeidler’s paper. �

2.3.2 Existence of Nucleolus Share Ratios

Lemma 2.3.2.For each S ⊆ N, the function h(·,S) is continuous on the

interior A◦ of A.

Proof. It is clear that the function mini∈S{ui
ai
} is continuous onV(S) × A◦, and

*2 In NTU games, the uniqueness is not guaranteed.
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h(a,S) can be represented by

h(a,S) = max
u∈V(S)

min
i∈S

{ui

ai

}
.

Then, it will be easy to see that the functionh(·,S) is both upper semicontin-

uous and lower semicontinuous directly from the definitions:

• h(·,S) is upper semicontinuous ata◦ if for any real numberr, h(a◦,S) < r

implies that for some neighborhoodU(a◦, δ) of a◦, h(a,S) < r whenever

a ∈ U(a◦, δ).

• h(·,S) is lower semicontinuous ata◦ if for any real numberr, h(a◦,S) > r

implies that for some neighborhoodU(a◦, δ) of a◦, h(a,S) > r whenever

a ∈ U(a◦, δ).

�

Problem 2.3.1.Show the example you think is simplest, in which the func-
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tion h(·,S) can be discontinuous on the boundary ofA.

Remark 2.3.1.For a formal proof of the above lemma, we may apply the

Berge maximum theorem*3 , by noting that h(a,S) = max{h | h ∈ U(a,S)},
where U(a,S) = {h ≥ 0 | ha ∈ V(S)}. But, showing the continuity of the

correspondence U(·,S) is almost equivalent to showing the continuity of the

very h(·,S).

Theorem 2.3.2.There exists a nucleolus share ratio.

Proof.Note first thatAIR is nonempty and compact. Nonemptiness follows

from the definition of an NTU game. It must be compact becauseAIR ⊆ A

andh(·,N) is continuous onA, andA is compact. Sinceh(·,S) is continuous

on AIR for eachS ⊆ N, so ise(·,S) continuous onAIR for eachS ⊆ N.

We may now follow the proof due to Schmeidler [35, 1969]. First, note for

*3 C.Berge,Topological Spaces, Macmillan, New York, 1963
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eachk = 1, 2, ..., 2n that

θk(a) = max
{

min
{
e(a,S) | S ∈ F

} ∣∣∣∣ F ⊆ 2N, |F| = k
}

Then,θk(·) is continuous onAIR, since it is defined by min and max of a finite

number of continuous functions.

Now, define

A1 = {a ∈ AIR| θ1(a) ≤ θ1(ā), ∀ā ∈ AIR}
Ak = {a ∈ Ak−1| θk(a) ≤ θk(ā), ∀ā ∈ Ak−1}, k = 1,2, ..., 2n.

It is enough to show thatA2n is nonempty. First, sinceθ1(·) is continuous on

AIR andAIR is compact, the closed subsetA1 of AIR is compact and nonempty.

Similarly, sinceθ2(·) is continuous onA1 andA1 is compact, the closed subset

A2 of A1 is also compact and nonempty. Continuing this finitely many times,

we will arrive at the conclusion thatA2n is nonempty �
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2.3.3 Inclusion in the Core

Recall that a payoff vectoru ∈ V(N) is in the core of an NTU game iff no

coalitionS has a payoff vectorū ∈ V(S) satisfyingūS > uS.

Lemma 2.3.3.A payoff vector u∈ V(N) is in the core of the NTU game iff

there exists an a∈ AIR such that ui = h(a,N)ai ∀i ∈ N and that

h(a,N) = max{h(a,S)| S ⊆ N}.

Proof. (sufficiency). Suppose that there was anS ⊆ N that has a payoff vector

ū ∈ V(S) such that ¯ui > h(a,N)ai for all i ∈ S. Sinceai > 0 for all i ∈ S,

there is a ˜u ∈ V(S) satisfying

ũi = h(a,S)ai > h(a,N)ai ∀i ∈ S

so thath(a,S) > h(a,N), a contradiction.
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(necessity). Suppose thatu ∈ V(N) is in the core. Then, sinceui ≥ wi > 0

for all i ∈ N, letting

ai =
ui∑

j∈N u j

we have, by definition, thath(a,N) ≥ ∑ j∈N u j; and hence, thata ∈ AIR.

Now, suppose that for someS ( N we hadh(a,S) > h(a,N). Then,

h(a,S)ai > h(a,N)ai ≥
(∑

j∈N
u j

)
ai = ui ∀i ∈ S.

This implies that there is a payoff vectoru◦ ∈ V(S) such that

u◦i > ui, ∀i ∈ S,

which contradicts the assumption thatu is in the core. �
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Theorem 2.3.3.If an NTU game has a nonempty core, the NTU nucleolus is

in the core.

Proof.By the previous lemma, there is ana ∈ AIR such thath(a,N) ≥ h(a,S)

for all S ⊆ N. Hencee(a,S) ≤ 0 for all S ⊆ N. Then, lettinga∗ ∈ AIR be any

nucleolus share ratio, we have by definition that

θ1(a
∗) ≤ θ1(a) ≤ 0 so that e(a∗,S) ≤ 0 ∀S ⊆ N.

Sincea∗i > 0 for all i ∈ N, we may rewrite this as follows:

h(a∗,N) ≥ h(a∗,S) ∀S ⊆ N,

which completes the proof. �
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2.4 The λ-Transfer Value

Given an NTU game (N,V) *4 and a vector of nonnegative weightsλ =

(λ1, . . . , λn) , 0, let us define the TU gamevλ as follows:

vλ(S) = max{
∑
i∈S
λixi | x ∈ V(S)}, ∀S ⊆ N.

Definition 2.4.1. (Shapley [38, 1969]). A payoff vector x is said to be an

NTU value if x∈ V(N) and there exists a nonnegative vectorλ ∈ <N
+ \ {0}

such thatλixi = (φvλ)i for all i ∈ N.

That is,x is an NTU value if it can be attained in the grand coalitionN,

and if there exists a vector of weightsλ such that in a TU gamevλ where

utilities are transferable at the ratios given by the weights, the value of the

gamevλ, called theλ-transfer value, coincides with the “λ -transfer payoff

*4 An NTU game (N, F,V) with F ( V(N).
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vector” (λ1x1, . . . , λnxn).

2.4.1 Existence of NTU Values

Given an NTU game (N,V), let F ( V(N) be the set of attain-

able payoff vectors, which is a compact convex subset of<N
+ . Let

Λ = {λ ∈ <N
+ |
∑

i∈N λi = 1}, and for eachλ ∈ Λ let vλ be again the

game defined by

vλ(S) = max

∑
i∈S
λi xi | x ∈ V(S)

 , ∀S ⊆ N.

Further, define

F(λ) = {(λ1x1, . . . , λnxn) | λ ∈ Λ andx ∈ F},

and letφ(λ) be the value of the TU gamevλ.

Assumption 2.4.1.The payoff vectorφ(λ) is continuous inλ, Pareto efficient

and individually rational.
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Theorem 2.4.1.(Shapley [38, 1969]). There existsλ ∈ Λ such thatφ(λ) ∈
F(λ).

Proof.Let P(λ) be the set of vectorsπ satisfying∑
i∈N
πi = 0 andφ(λ) − π ∈ F(λ).

Then, P(λ) is nonempty, convex, compact for eachλ ∈ Λ; and is upper-

hemicontinuous inλ.

Define the set-valued functionT by

T(λ) = λ + P(λ) = {λ + π | π ∈ P(λ)}.

Let A be a simplex in the hyperplane{α | ∑i∈N αi = 1}, that is large enough

to contain all setsT(λ), λ ∈ Λ andΛ itself. This is possible because of the

upper hemicontinuity ofT; so thatT(Λ) becomes compact.
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Extend the definition ofT to A by

T(α) = T( f (α)), where fi(α) =
max(0, αi)∑

j∈N max(0, α j)
.

Then, by the Kakutani’s theorem, there is a fixed pointα∗ satisfyingα∗ ∈
T(α∗). Let us writeλ∗ for f (α∗).

Now, suppose thatα∗ , λ∗. Then, by the definition off , we haveα∗ ∈
A \ Λ, andλ∗i = 0 > α∗i for somei.

But, thatα∗ ∈ T(λ∗) = λ∗+P(λ∗) and thatλ∗ = f (α∗) ≥ 0 ∈ <N
+ imply that

π∗i < 0 for someπ∗ ∈ P(λ∗).

Sinceφi(λ∗) ≥ 0 by individual rationality, in the feasible payoff vector

φ(λ∗) − π∗ ∈ F(λ∗) playeri obtains a positive amountφi(λ∗) − π∗i > 0.

But this is impossible without sidepayments, since alli’s payoffs invλ∗ are

zero becauseλ∗i = 0.

Therefore we conclude thatα∗ = λ∗, so thatλ∗ ∈ T(λ∗) implying that

0 ∈ P(λ∗). Hence,φ(λ∗) ∈ F(λ∗), which completes the proof. �
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The NTU value may not be unique. In the two-person case with a strictly

individually rational portion in the Pareto frontier, the NTU value is unique

and coincides with the Nash bargaining solution.

For an excellent discussion to motivate the NTU value from interpersonal

utility comparisons, see the original Shapley’s paper [38, 1969]. Sixteen

years after this paper, Aumann [3, 1985] succeeded in axiomatizing the NTU

value.
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