Equilibria and Cores of Coalitional Strategic Games

Mikio Nakayama

- Scarf, H. (1971), On the Existence of a Cooperative Solution for a General Class of N-Person Games, *Journal of Economic Theory* **3**.
- Nakayama, M. (1998), Self-Binding Coalitions, *Keio Economic Studies* **35** no.1.
- Utsumi, Y. and M.Nakayama (2004), Strategic Cores in a Public Goods Economy," *International Game Theory Review* **6**.
- Hirai, T., T.Masuzawa and M. Nakayama (2006), Coalition-Proof Nash Equilibria ria and Cores in a Strategic Pure Exchange Game of Bads, *Mathematical Social Sciences* **51**.
- Harada, T. and M.Nakayama (2011), The Strategic Cores α, β, γ and δ, International Game Theory Review, 13,no.1, pp.1-15.

Definition: Coalitional Strategic Games

 $G = (N, (X^i, u_i)_{i \in N})$

- $N = \{1, 2, ..., n\}$: the set of players
 - $\diamond \quad \emptyset \neq S \subseteq N : S \text{ is a coalition}$
- X^i is the set of strategies of $i \in N$

$$\diamond \quad X^S := \prod_{i \in S} X^i, \quad X := X^N$$

• $u_i : X \to \Re$ is the payoff function of $i \in N$ Assumption: $\forall i \in N, X^i$ is compact and u^i is continuous.

Pure Exchange Game

Scarf,H.E., 1971, "On the existence of a cooperative solution for a general class of n-person games," *Journal of Economic Theory* **3**, 169-181.

$$N = \{1, \dots, n\}$$

$$X^{i} = \left\{ x^{i} = (x^{i1}, \dots, x^{in}) \in \mathfrak{R}^{m \times n}_{+} \mid \sum_{j \in N} x^{ij} = w^{i} \in \mathfrak{R}^{m}_{+} \setminus \{0\} \right\}$$

$$u_{i}(x) = v_{i} \left(\sum_{j \in N} x^{ji} \right), \text{ where } x = (x^{1}, \dots, x^{n}) \in X.$$

Solutions: Equilibria and Cores

- Coalition *S* is said to *deviate* from $x \in X$ if *S* has a *deviation* $z^S \in X^S$ defined by $u_i(z^S, x^{N \setminus S}) > u_i(x) \quad \forall i \in S$.
- A deviation $z^S \in X^S$ of coalition S from $x \in X$ is said to be *credible* if
 - 1. |S| = 1
 - 2. |S| > 1 implies that no proper subcoalition $T \subsetneq S$ has a *credible* deviation from $(z^S, x^{N \setminus S})$.

Coalition-Proof Nash Equilibria (結託耐性 ナッシュ均衡)

- Strategy profile x^{*} ∈ X is said to be a *coalition*proof Nash equilibrium if no coalition has a credible deviation from x^{*}.
- Strategy profile x^{*} ∈ X is said to be a *strong Nash equilibrium* if no coalition has a deviation from x^{*}.

Remark: Any strong Nash equilibrium is coalition-proof.

Dominant Strategies (支配戦略)

• Strategy profile $x^S \in X^S$ for coalition *S* is said to be an *S*-*dominant* strategy if for all $z \in X$,

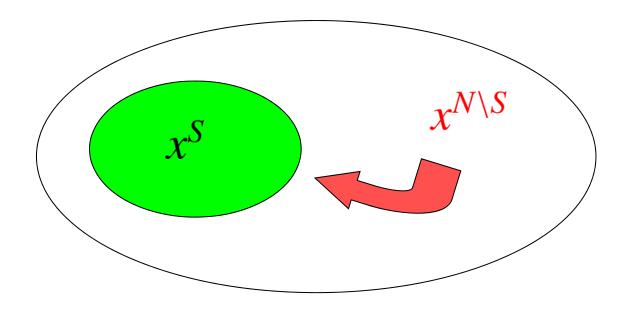
$$u_i(x^S, z^{N\setminus S}) \ge u_i(z) \quad \forall i \in S$$

Strategy profile x^{N\S} ∈ X^{N\S} of coalition N \ S is said to be an N \ S - dominant punishment strategy against S if for all z ∈ X,

$$u_i(z^S, x^{N\setminus S}) \le u_i(z) \quad \forall i \in S$$

Strategic Cores

What can a coalition achieve for itself facing the actions of outsiders?



Classical strategic cores: α and β

- Coalitional TU games the *maximin value*
- Coalitional NTU, or strategic games the α-effectiveness (the maximin set) the β-effectiveness (the minimax set)

The α -core

• Given $x \in X$, coalition *S* is said to α -improve upon *x* (or, α -deviate from *x*) if there exists $y^{S} \in X^{S}$ such that for any $z \in X$,

$$u_i(y^S, z^{N\setminus S}) > u_i(x) \quad \forall i \in S$$

• The α -core is the set of strategy profiles $x \in X$ upon which no coalition α -improves.

The β-core

• Given $x \in X$, coalition *S* is said to β -improve upon *x* (or, β -deviate from *x*) if for any $z \in X$ there exists an $y^S \in X^S$ such that

$$u_i(y^S, z^{N\setminus S}) > u_i(x) \quad \forall i \in S$$

• The β -core is the set of strategy profiles $x \in X$ upon which no coalition β -improves.

α -core $\supseteq \beta$ -core

coalition S α -improves upon x $\exists z^{S} \in X^{S} \ \forall y \in X \ \forall i \in S : u_{i}(z^{S}, y^{N \setminus S}) > u_{i}(x)$ $\forall y \in X \exists z^S \in X^S \quad \forall i \in S : u_i(z^S, y^{N \setminus S}) > u_i(x)$ coalition S β -improves upon x

Theorem : α -core = β -core

Nakayama, M. 1998, "Self-binding coalitions," *Keio Economic Studies* **35**, 1-8.

- For each nonempty proper subset *S* of *N*, assume that either
 - $\diamond S$ has an S dominant strategy ,

or

◊ N \ S has an N \ S - dominant punishment strategy against S.

Then $\alpha - \operatorname{core} = \beta - \operatorname{core}$.

Prove that if every nonempty proper $N \setminus S$ of N has an $N \setminus S$ - dominant punishment strategy against S, then

$$\alpha - core = \beta - core.$$

(Problem cstg 01)

Laffont J.J. 1977, *Effects externes et théorie économique*, Monographies du Séminaire d'Econométrie, Editions du Center national de la Recherche Scientifique (CNRS), Paris.

The strategic cores γ and δ

- We now reformulate the cores in [1] and [2], respectively, as the γ -core and the δ -core appropriately in a coalitional strategic game.
 - 1 Chander, P. and H.Tulkens, 1997, "The core of an economy with multiple externalities," *International Journal of Game Theory*, **26**, 379-401.
 - 2 Currarini,S. and M.Marini, 2004, "A conjectural cooperative equilibrium for strategic games," *Game Practice and the Environment*, C.Carraro and V.Fragnelli (eds), Edward Elgar.

The S-Pareto Nash Equilibrium

- Given a coalition S ⊆ N, strategy profile y ∈ X is said to be an S Pareto Nash equilibrium if for S and for every j ∈ N \ S, there is no deviation from y.
- *PN(S)* := the set of *S* –Pareto Nash equilibria.
 (assume nonempty)

Remark: The S-Pareto Nash equilibrium with |S| = 1 is a Nash equilibrium, whereas for S = N it is just the set of weakly Pareto efficient strategy profiles.

The γ-core

- Given x ∈ X, coalition S is said to γ−improve upon x if there exists a strategy profile y ∈ X such that
 - 1. $y \in PN(S)$
 - 2. $u_i(y) > u_i(x) \quad \forall i \in S$
- The γ -core is the set of strategy profiles $x \in X$ upon which no coalition γ -improves.

Definition: subgame $G(S \mid x^{N \setminus S})$

- Given any strategy profile x ∈ X and any coalition S, the subgame G(S | x^{N\S}) of G is defined to be the game (S, (Xⁱ, u_i(·, x^{N\S}))_{i∈S}).
- $E^{S}(x^{N\setminus S})$:= the set of Nash equilibria $y^{S} \in X^{S}$ in the subgame $G(S \mid x^{N\setminus S})$. (assume nonempty)

Remark: If $y \in X$ is an S-Pareto Nash equilibrium, then $y^{N\setminus S}$ is a Nash equilibrium in $G(N \setminus S \mid y^S)$.

The δ-core

 Given x ∈ X, coalition S is said to δ−improve upon x if there exists a strategy profile y ∈ X such that

1.
$$y \in X^S \times E^{N \setminus S}(y^S)$$

2.
$$u_i(y) > u_i(x) \quad \forall i \in S$$

• The δ -core is the set of strategy profiles $x \in X$ upon which no coalition δ - improves.

Proposition

Harada, T. and M. Nakayama, 2011, "The strategic cores α , β , γ and δ ," *IGTR*, **13**, no.1, pp.1-15.

1. δ -core $\subseteq \gamma$ -core

2. δ -core $\subseteq \alpha$ -core

- 1. $y \in PN(S) \Longrightarrow y \in X^S \times E^{N \setminus S}(y^S)$
- 2. Prove this. (Problem cstg 02)

Theorem : Refinement

Harada, T. and M. Nakayama, op. cit.

• If every player has a dominant strategy, then α -core $\supseteq \beta$ -core $\supseteq \gamma$ -core $\supseteq \delta$ -core

Consider a β -improvement by S upon x against the *dominant* strategy profile $y^{N\setminus S} \in X^{N\setminus S}$. Then, S can choose $y^S \in X^S$ so that y is an S-Pareto Nash equilibrium, i.e., S can γ - improve upon x.

Core Equality Theorem:

1. Let $d \in X$ be a dominant strategy equilibrium satisfying

$$E^{N\setminus S}(y^S) = \{d^{N\setminus S}\} \quad \forall S \subsetneq N \text{ and } \forall y^S \in X^S.$$

Then,

$$\gamma - \text{core} = \delta - \text{core}.$$

2. If, *moreover*, for each $S \subsetneq N$, $d^S \in X^S$ is an *S*-dominant punishment strategy, then

$$\alpha - \operatorname{core} = \beta - \operatorname{core} = \gamma - \operatorname{core} = \delta - \operatorname{core}.$$

Proof

1. Problem cstg 03

- 2. Let $x \in X$ be δ -improved upon by $S \subsetneq N$. Then, for *some* $y^S \in X^S$:
 - $(y^S, d^{N \setminus S}) \in X^S \times E^{N \setminus S}(y^S)$
 - $u_i(y^S, d^{N \setminus S}) > u_i(x) \quad \forall i \in S$ and, therefore *for all* $z \in X$:
 - $u_i(y^S, z^{N \setminus S}) \ge u_i(y^S, d^{N \setminus S}) > u_i(x) \quad \forall i \in S$

Hence, we have shown that α -core $\subseteq \delta$ -core.

Applications: The pure exchange game

For each $i \in N$,

•
$$X^i := \left\{ x^i = (x^{i1}, \dots, x^{in}) \in \mathfrak{R}^{nm}_+ \mid \sum_{j \in \mathbb{N}} x^{ij} = w^i \in \mathfrak{R}^m_+ \setminus \{0\} \right\}$$

•
$$u_i(x) := v_i\left(\sum_{j \in N} x^{ji}\right)$$

• $v_i(\cdot)$ is continuous, quasiconcave and strictly monotone increasing.

No exchange by noncooperative equilibria

Hirai,T., T.Masuzawa and M.Nakayama, 2006, "Coalitionproof Nash equilibria and cores in a strategic pure exchange game of bads," *Mathematical Social Sciences* **51**.

Let $x^{\circ} \in X$ be the strategy profile describing no exchange at all, i.e., $x^{\circ ii} = w^i$ for all $i \in N$. Then:

Theorem: No exchange by noncooperative equilibria

- The strategy profile x° ∈ X is the *only* Nash equilibrium, which is also *coalition-proof* and *dominant*.
- Let x ∈ X be weakly Pareto efficient. Then x is a *strong* Nash equilibrium *iff* x = x°.
 ⇒ Evident.

 \Leftarrow By the continuity and the strict monotonicity.

Proof (outline) of : \Leftarrow

Suppose x° was *not* a strong Nash equilibrium. Then:

•
$$\exists z^{S} \in X^{S}$$
 with $S \subsetneq N$ s.t.
 $u^{i}(z^{S}, x^{\circ N \setminus S}) > u^{i}(x^{\circ}) = v^{i}(w^{i}) \quad \forall i \in S.$
and
 $u^{i}(z^{S}, x^{\circ N \setminus S}) = u^{i}(x^{\circ}) = v^{i}(w^{i}) \quad \forall i \in N \setminus S.$

• By the continuity and monotonicity of v^i , $\exists y^S \in X^S$ s.t. $u^i(y^S, x^{\circ N \setminus S}) > u^i(x^\circ) = v^i(w^i) \quad \forall i \in N,$

a contradiction.

Theorem : Cooperative Exchange

Harada, T. and M. Nakayama, op. cit.

• The dominant strategy equilibrium $x^{\circ} \in X$ satisfies that $E^{N \setminus S}(y^S) = \{x^{\circ N \setminus S}\}$ for $\forall S \subsetneq N$ and $\forall y^S \in X^S$, and that $x^{\circ S} \in X^S$ is an *S*-dominant punishment strategy for each $S \subsetneq N$.

Hence, by the Core Equality Theorem (p. 21):

• $\emptyset \neq \delta$ - core = γ - core = β - core = α - core Nonemptiness follows from Scarf (1971).

Direct proof of : $\alpha - \operatorname{core} \subseteq \delta - \operatorname{core}$.

- Any α -core strategy $x \in X$ generates a core allocation ξ .
- Take the dominant strategy equilibrium x° , which gives the only Nash equilibrium $x^{\circ N \setminus S}$ in $G(N \setminus S | y^S)$ for all $S \subsetneq N$ and $y^S \in X^S$.
- Any strategy profile $(y^S, x^{\circ N \setminus S})$ generates an S-feasible allocation ζ (i.e., $\sum_{i \in S} \zeta^i \leq \sum_{i \in S} w^i$).
- Any ζ cannot dominate the core allocation ξ .
- Any $(y^S, x^{\circ N \setminus S})$ cannot δ improve upon x.

Pure exchange of bads Hirai et al. op. cit.

For each $i \in N$,

• $X^i := \left\{ x^i = (x^{i1}, \dots, x^{in}) \in \mathfrak{R}^{nm}_+ \mid \sum_{j \in \mathbb{N}} x^{ij} = w^i \in \mathfrak{R}^m_+ \setminus \{0\} \right\}$

•
$$u_i(x) := v_i \Big(\sum_{j \in N} x^{ji}\Big)$$

• $v_i(\cdot)$ is continuous, (quasiconcave) and strictly monotone decreasing.

Noncooperative equilibria

Strong incentive for mutual dumping of garbage

Existence of an S-dominant strategy

• For any nonempty proper $S \subsetneq N$ and the strategy $x^S \in X^S$,

 x^{S} is S – dominant $\iff x^{ij} = 0 \in \mathfrak{R}^{m}_{+} \quad \forall i, j \in S.$

 $(x^i \text{ is dominant } \iff x^{ii} = 0)$

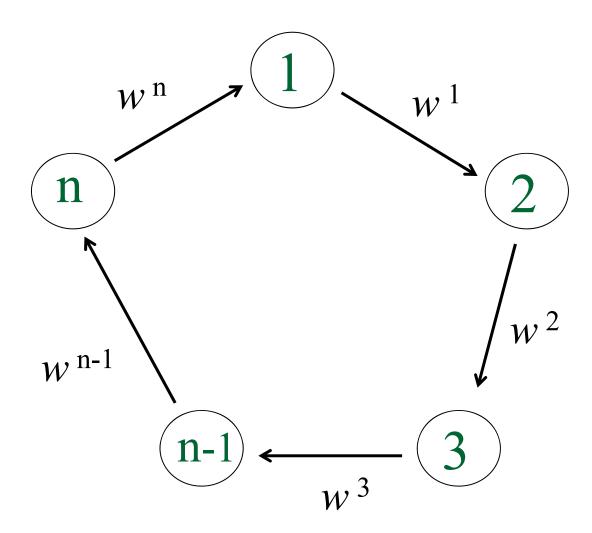
Coalition-proof Nash equilibria

• π : permutation of N

• $x(\pi) \in X$: $x(\pi)^{\pi(i)\pi(i+1)} = w^{\pi(i)} \quad \forall i \in N, n+1 \equiv 1$

Then, if a permutation π^* satisfies

 $\nexists \pi$ s.t. $u_i(x(\pi)) > u_i(x(\pi^*)) \quad \forall i \in N,$ $x(\pi^*)$ is a coalition-proof Nash equilibrium.



Because:

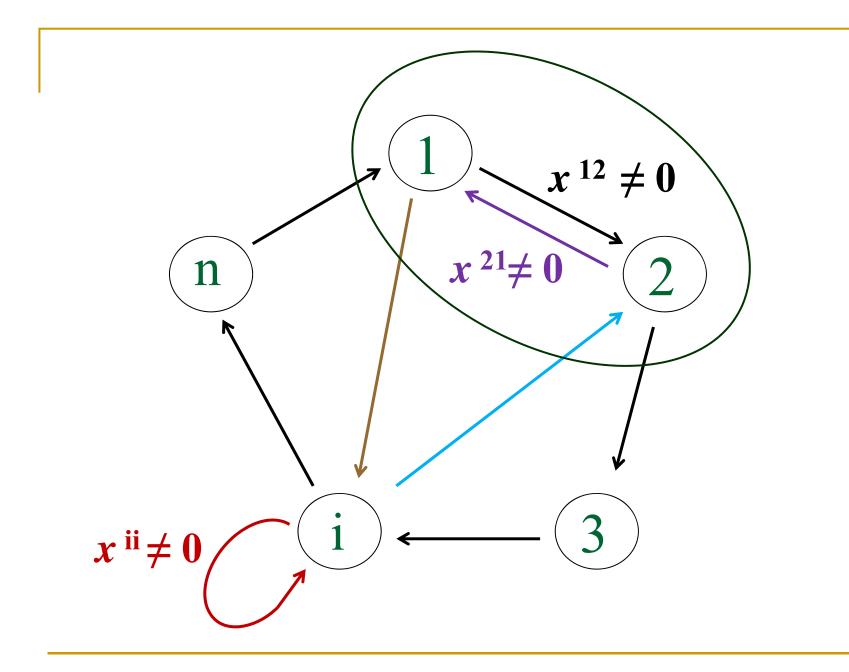
1. If $u_i(x) > u_i(x(\pi^*))$ $\forall i \in N$, then x is not credible.

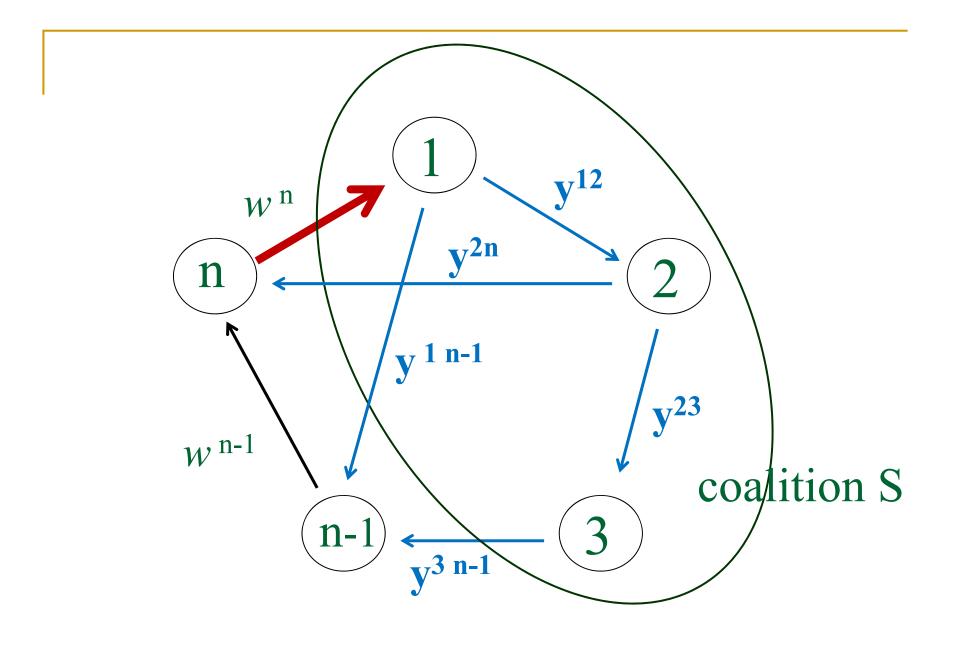
 $\therefore x \neq x(\pi^*) \Rightarrow \exists S = \{i_1, \dots, i_h\} \subsetneq N \text{ such that} \\ x^{i_1 i_2} \neq 0, x^{i_2 i_3} \neq 0, \dots, x^{i_{h-1} i_h} \neq 0, x^{i_h i_1} \neq 0 \\ \therefore y^S \text{ with } y^{i_j} = 0, (\forall i, \forall j \in S) \text{ is a credible} \\ \text{deviation from } x.$

2. If $S \subsetneq N$, S cannot deviate.

 $\therefore \text{ For any deviation } y^S \text{ of } S \subsetneq N,$ $\exists \pi^*(i) \in N \setminus S, \quad \exists \pi^*(i+1) \in S$ such that $x(\pi^*)^{\pi^*(i+1)} = w^{\pi^*(i)}.$

Then, $\pi^*(i + 1)$ cannot be made better off.





Strong Nash equilibrium

If $x(\pi^*)$ itself is weakly Pareto efficient, then $x(\pi^*)$ is a strong Nash equilibrium.

Corollary: When m = 1, $x(\pi)$ is a strong Nash equilibrium for any permutation π .

Strategic cores α and β

- α -core = β -core $\neq \emptyset$.
 - ♦ The *equality* holds since any nonempty proper $S \subseteq N$ has an *S*-dominant strategy.
 - Nonemptiness follows from the fact that
 - * no $S \neq N \operatorname{can} \alpha$ -improve upon $x(\pi)$,
 - * $x(\pi)$ is weakly Pareto efficient, or otherwise,
 - * $\exists x \in X$ s.t. *x* is weakly Pareto efficient and $u_i(x) \ge u_i(x(\pi))$ $\forall i \in N$.

Cooperative solutions: no dumping

• Let m = 1 and let

$$w^1 \le w^2 \le \dots \le w^n.$$

Then, the strategy profile $x^{\circ} \in X$ such that $x^{\circ ii} = w^i \quad (\forall i \in N)$ is in the α -core if and only if

$$\sum_{j=1}^{k} w^{j} \ge w^{k+1} \quad k = 1, \dots, n-1.$$

Proof

N cannot α -improve upon x° . Take $h \in S \subsetneq N$ such that $w^h = \min_{j \in S} w^j$. Then :

• $w^h \leq \sum_{j \in N \setminus S} w^j$, even if $\max_{j \in N \setminus S} w^j \leq w^h$. (by assumption)

•
$$\forall x^{S} \in X^{S}, \exists z \in X \text{ s.t. } \sum_{j \in N \setminus S} z^{jh} = \sum_{j \in N \setminus S} w^{j}$$

and $u_{h}(x^{\circ}) \ge u_{h}(x^{S}, z^{N \setminus S})$

Converse: Let *k* satisfy $\sum_{j=1}^{k} w^j < w^{k+1}$. Then, coalition $\{k + 1, ..., n\}$ can α -improve upon x° , since $w^{k+1} \leq \cdots \leq w^n$.

Strategic cores γ and δ

• For $|N| \ge 3$: γ -core = \emptyset .

(Hence this γ -core does not contain strong Nash equilibria)

• For |N| = 2: (Problem cstg 04) $\emptyset \neq \delta$ - core = γ - core = β - core = α - core.

> (cf. Core Equality Theorem (p.21) for the equality; and p.37 for nonemptiness)

Proof of the first fact

- For $\forall z \in X$, $\exists k \in N$ such that $\sum_{j \in N} z^{jk} \neq 0 \in \Re_+^m$.
- Since $|N| \ge 3$, there is an $x \in X$ with

$$x^{ik} = x^{ii} = 0 \in \mathfrak{R}^m_+ \quad \forall i \in N.$$

• This *x* is a Nash equilibrium with

 $u_k(x) > u_k(z).$

• Hence $\{k\} \gamma$ -improves upon z

The commons game G^c

Harada, T. and M. Nakayama, op. cit.

For each $i \in N$,

- $X^i := \mathfrak{R}_+$
- $u_i(q^1, \dots, q^n) := q^i P\left(\sum_{k \in N} q^k\right)$, where $\diamond q^i \in X^i$ $\diamond P\left(\sum_{k \in N} q^k\right) = \max\left(0, a - \sum_{k \in N} q^k\right)$ $\diamond a > 0$

Tragedy of the commons

- Social optimum: $\bar{q}(N) = \arg \max_{q(N)} q(N)(a q(N))$, $\bar{q}(N) = \frac{a}{2}$; $\bar{q}^i = \frac{a}{2n}$, $u_i(\bar{q}) = \frac{a^2}{4n}$ $\forall i \in N$.
- The unique (payoff-positive) Nash equilibrium $q^* = (q^{*1}, \dots, q^{*n})$: $q^{*i} = \frac{a}{n+1}, \ u_i(q^*) = \frac{a^2}{(n+1)^2} \quad \forall i \in N.$

◊ *γ−individually rational boundary* : = $\frac{a^2}{(n+1)^2}$

• $\max_{q^i \in X^i} u_i(q^i, E^{N \setminus \{i\}}(q^i)) = u_i(\frac{a}{2}, E^{N \setminus \{i\}}(\frac{a}{2})) = \frac{a^2}{4n}$ $\diamond \delta$ -individually rational boundary : $= \frac{a^2}{4n}$

1.
$$PN(N) = \alpha - \text{core} = \beta - \text{core}$$

 $\supseteq \gamma - \text{core} \supseteq \delta - \text{core} \neq \emptyset.$

2.
$$\delta$$
-core = { x^{\dagger} } = { $\left(\frac{a}{2n}, \dots, \frac{a}{2n}\right)$ }

$$u_i(x^{\dagger}) = (a - x^{\dagger}(N))x^{\dagger i} = \frac{a^2}{4n}, \quad \forall i \in N$$

: the δ - individually rational boundary

Remarks:

- The refinement is obtained *without* a dominant strategy equilibrium.
- There is a game without a dominant strategy equilibrium, but with a *nonempty* δ -core that is not contained in the β -core.

- In the pure exchange game of goods:
 - Non-cooperative equilibria do not generate outcomes which are better than the initial states.
 - All cores lead to the *same* set of Pareto ef-ficient outcomes.
- In the pure exchange game of bads:
 - Non-cooperative equilibria generate mutual or loop-shaped dumping of garbage.
 - ♦ The α -core (and the β -core) can lead to everyone's self-restraint from dumping garbage.

Core Equivalent Strong Nash Equilibria in the Pure Exchange Game

- Under a *certain restriction on the deviations*, the set of strong Nash equilibrium is nonempty and equals the core of the pure exchange game with an *outcome function*.
- The *core* of a pure exchange economy is the set of *N*-allocations *y*^{*} that are not *improved*, i.e., the set of *N*-allocations such that for any nonempty *S* ⊆ *N* there is no *S*-allocation *y* satisfying *v_i(yⁱ) > v_i(y^{*i})* for all *i* ∈ *S*.

Pure Exchange Game with an Outcome Function

The outcome function $g : X \to \mathfrak{R}^{nm}_+$ of pure exchange game $G = (N, \{X^i\}, \{u_i\})$ is given by

$$g(x) = \begin{cases} (\sum_{j \in N} x^{j1}, \dots, \sum_{j \in N} x^{jn}) & if \ (\cdot) \in \mathfrak{R}^{nm}_{+}, \\ w & otherwise \end{cases}$$

The payoff $u_i(x)$ to player $i \in N$ is defined to be

$$u_i(x) = v_i(g(x)_i) \quad \forall i \in N$$

where $g(x)_i$ is the *i*-th component of g(x).

Remarks

• The outcom is an *N*-allocation, since

$$\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} x^{ji} = \sum_{j \in \mathbb{N}} \sum_{i \in \mathbb{N}} x^{ji} = \sum_{j \in \mathbb{N}} w^j$$

• Strategies are allowed to be negative, meaning *requests* instead of offers..

Self-Supporting Deviations

Given any strategy profile $x^* \in X$ and any *N*-allocation *y* that is also an *S*-allocation, deviation $x^S \in X^S$ from x^* of any nonempty $S \subseteq N$ such that

$$x_h^{ij} = \frac{w_h^i}{\sum_{i \in S} w_h^i} \left(y_h^j - \sum_{k \in N \setminus S} x_h^{*kj} \right)$$

is called a self-supporting deviation, since it can be shown that

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_h^{ij} = \sum_{i \in S} \sum_{j \in N \setminus S} x_h^{*ji}, \quad h = 1, ..., m.$$

Proof of the equality

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_h^{ij} = \sum_{i \in S} \frac{w_h^i}{\sum_{i \in S} w_h^i} \left(\sum_{j \in N \setminus S} y_h^j - \sum_{j \in N \setminus S} \sum_{k \in N \setminus S} x_h^{*kj} \right)$$

$$= \frac{\sum_{i \in S} w_h^i}{\sum_{i \in S} w_h^i} \left(\sum_{j \in N \setminus S} w_h^j - \left(\sum_{k \in N \setminus S} w_h^k - \sum_{j \in S} \sum_{k \in N \setminus S} x_h^{*kj} \right) \right)$$

$$=\sum_{j\in S}\sum_{k\in N\setminus S}x_h^{*kj}, \ h=1,\ldots,m.$$

Proposition

The core of game G coincides with the set of N-allocations attained by the strong Nash equilibrium with only self-supporting deviations being permissible.

Proof (\Leftarrow) Let y^* be an *N*-allocation not in the core, and let $y^* = g(x^*)$. Let y be an *S*-allocation that improves upon y^* and take a self-supporting deviation x^S :

$$x_h^{ij} = \frac{w_h^i}{\sum_{i \in S} w_h^i} \left(y_h^j - \sum_{k \in N \setminus S} x_h^{*kj} \right)$$

Then, $x^i \in X^i$ for all $i \in N$, since

$$\begin{split} \sum_{j \in N} x_h^{ij} &= \frac{w_h^i}{\sum_{i \in S} w_h^i} (\sum_{i \in N} y_h^i - \sum_{j \in N} \sum_{k \in N \setminus S} x_h^{*kj}) \\ &= \frac{w_h^i}{\sum_{i \in S} w_h^i} (\sum_{i \in N} w_h^i - \sum_{i \in N \setminus S} w_h^i) = w_h^i. \end{split}$$

Hence, x^* is not a strong Nash equilibrium, since

$$\sum_{i \in S} x_h^{ij} = y_h^j - \sum_{k \in N \setminus S} x_h^{*kj},$$

or $y = g(x^S, x^{*N \setminus S})$, showing that $u_i(x^S, x^{*N \setminus S}) > u_i(x^*) \quad \forall i \in S.$

$$Proof \quad (\Longrightarrow)$$

Let $x^* \in X$ admit a self-supporting deviation $x^S \in X^S$. Then,

$$\sum_{i \in S} \sum_{j \in S} x_h^{ij} + \sum_{i \in S} \sum_{j \in N \setminus S} x_h^{ij} = \sum_{i \in S} w_h^i, \quad h = 1, ..., m$$

Since x^{S} is a self-supporting deviation,

$$\sum_{i \in S} \sum_{j \in S} x_h^{ij} + \sum_{j \in N \setminus S} \sum_{i \in S} x_h^{*ji} = \sum_{i \in S} w_h^i, \quad h = 1, ..., m.$$

Hence, the allocation $g(x^S, x^{*N\setminus S})$ is an *S*-allocation, implying that $g(x^*)$ is not in the core.

 \Box