TU Game in Effectiveness Form: an Example of Public Good Game

Rosenthal, R.W. [1972] "Cooperative Games in Effectiveness Form," *Journal of Economic Theory* **5**, pp.88-101

Public Good Game I

$$v(S) = \max_{y \ge 0} \left(\sum_{i \in S} w_i(y) - c(y) \right) \quad \forall S \subseteq N$$

- $y \ge 0$: quantity of public good supplied (equal consumption)
- $w_i(y) \ge 0$: utility of player $i \in N$ (increasing and $w_i(0) = 0$)
- $c(y) \ge 0$: cost function (increasing, and c(0) = 0).

Public Good Game I is convex

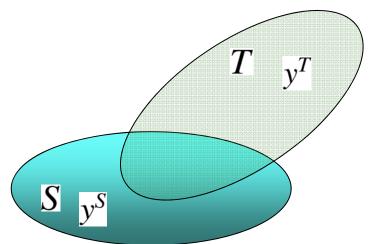
Assume
$$v(R) := \sum_{i \in R} w_i(y^R) - c(y^R) \quad \forall R \subseteq N$$

Take any S and T, and assume that $y^S \ge y^T$.

$$v(S) + v(T)$$

$$= \sum_{i \in S} w_i(y^S) - c(y^S)$$

$$+ \sum_{i \in T \setminus S} w_i(y^T) + \sum_{i \in T \cap S} w_i(y^T) - c(y^T)$$



(continued)

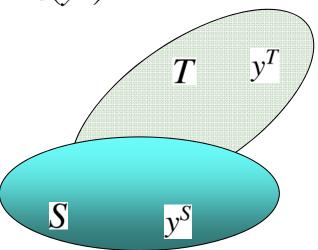
$$\leq \sum_{i \in S} w_i(y^S) + \sum_{i \in T \setminus S} w_i(y^S) - c(y^S) + \sum_{i \in S \cap T} w_i(y^T) - c(y^T)$$

$$= \sum_{i \in S \cup T} w_i(y^S) - c(y^S) + \sum_{i \in T \cap S} w_i(y^T) - c(y^T)$$

$$\leq \sum_{i \in S \cup T} w_i(y^{S \cup T}) - c(y^{S \cup T})$$

$$+\sum_{i\in T\cap S}w_i(y^{S\cap T})-c(y^{S\cap T})$$

$$= v(S \cup T) + v(S \cap T)$$



Public Good Game I' (degenerate case)

$$v(S) = \max\left(0, \sum_{i \in S} B_i - C\right) \quad \forall S \subseteq N$$

- C: Cost for construction of disposal plant
- B_i : i's benefit from the plant

Game I' is Public Good Game I

$$v(S) = \max_{y \ge 0} \left(\sum_{i \in S} w_i(y) - c(y) \right) \quad \forall S \subseteq N$$

$$c(0) = w_i(0) = 0, \forall i \in N$$

$$c(y) = C$$
; $w_i(y) = B_i \ \forall y > 0$, $\forall i \in N$

$$v(S) = \max\left(0, \sum_{i \in S} B_i - C\right) \quad \forall S \subseteq N$$

Game I' and the Bankruptcy Game

Let
$$C = \sum_{i \in N} d_i - E$$
. Then

$$v(S) = \max\left(0, \sum_{i \in S} d_i - C\right) \quad \forall S \subseteq N$$

$$\iff$$

$$v(S) = \max\left(0, E - \sum_{j \in N \setminus S} d_j\right) \quad \forall S \subseteq N$$

Bankruptcy Game is Convex

$$v(S) = \max\left(0, E - \sum_{j \in N \setminus S} d_j\right) \quad \forall S \subseteq N$$

- **E**: estate of the bankrupt
- d_i : debt to creditor $j \in N$
- $E < \sum_{j \in N} d_j$
- v(S): the value S can assure itself

Public Good Game II

Provision via a Tax System

Income Tax Rate t (0≤t≤1)

• $y \ge 0$: quantity of public good supplied (equal consumption)

• $w_i(y) \ge 0$: utility of player $i \in N$ (increasing, concave)

• $c(y) \ge 0$: cost function (increasing, linear)

• $m_i > 0$: initial endowment of private good of player $i \in N$

Feasible Allocations

Income Tax Rate $t \in [0, 1]$

Definition (S, t-**feasible allocations**): Allocation $(y, x) = ((y, x_1), \dots, (y, x_n))$ is (S, t)-feasible if $y \ge 0, x_i \ge 0, \forall i \in S$ and

$$\sum_{j \in S} x_j + c(y) \le \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j.$$

Remark: (N, t)-feasible allocation is simply said to be a feasible allocation. When S = N, feasible allocations are independent of t.

Payoffs

Assumption: Utility $U_i(y, x)$ of player $i \in N$ for allocation (y, x) is given by the *quasilinear* function

$$U_i(y, x) = w_i(y) + x_i$$

Remark: By the monotonicity of U_i , $\sum_{i \in S} U_i(y, x)$ attains its maximum on the boundary of the set of (S, t)-feasible allocations, so that :

$$\sum_{j \in S} x_j + c(y) = \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$

Remark:
$$\max \sum_{j \in S} U_j(y, x) = \max \sum_{j \in S} (w_j(y) + x_j)$$

$$= \max \left(\sum_{j \in S} w_j(y) - c(y) \right) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$

Public Good Game II (effectiveness form)

Given $t \in [0, 1]$ and (y, x), any S is assumed to obtain

$$v^{y,t}(S) = \max_{y' \ge y} \sum_{j \in S} w_j(y') - c(y') + \sum_{j \in S} m_j$$
$$+ t \sum_{j \in N \setminus S} m_j \quad \text{if } S \subsetneq N \quad \text{and} \quad t > 0$$
$$= \max_{y' \ge 0} \sum_{j \in S} w_j(y') - c(y') + \sum_{j \in S} m_j \quad \text{otherwise}$$

Remark: When t = 0, this is strategically equivalent to public good game I.

Definition (t- **allocation**): Allocation $(y, x) = ((y, x_1), \dots, (y, x_n))$ is said to be a t-allocation if it is feasible and

$$x_j = (1 - t)m_j, \quad \forall j \in N$$

Definition (t-optimal allocation): t-Allocation (y, x) = ((y, x_1), . . . , (y, x_n)) is said to be a t-optimal allocation if it is Pareto optimal, i.e.,

$$v^{y,t}(N) = \sum_{j \in N} w_j(y) - c(y) + \sum_{j \in N} m_j$$

Core of Public Good Game II (effectivenes form)

Assumption Initial allocation $(y, x) = ((0, m_1), \dots, (0, m_n))$ is *not* Pareto optimal..

Definition: Let $0 < t \le 1$. Then, feasible allocation (y, x) is said to belong to the *t*-Core if

$$\sum_{j \in S} \left(w_j(y) + x_j \right) \ge v^{y,t}(S) \quad \forall S \subseteq N$$

$$\sum_{j \in N} \left(w_j(y) + x_j \right) \le v^{y,t}(N)$$

Proposition 1. $(y, x) \in t - Core$

$$\iff$$

(y, x) is a Pareto optimal allocation satisfying that $x_i \le (1 - t)m_i \ (\forall i \in N)$

Proof: \Leftarrow) Initially, we show that for any $S \subseteq N$,

$$\sum_{j \in S} \left(w_j(y) + x_j \right)$$

$$\geq \sum_{j \in S} w_j(y) - c(y) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$

By the Pareto optimality and the assumption, we have that

$$\bullet \sum_{j \in N} x_j + c(y) = \sum_{j \in N} m_j$$

•
$$-\sum_{j \in N \setminus S} x_j \ge -(1-t) \sum_{j \in N \setminus S} m_j$$

Hence,

$$\sum_{j \in S} \left(w_j(y) + x_j \right) = \sum_{j \in S} w_j(y) - c(y) + \sum_{j \in N} m_j - \sum_{j \in N \setminus S} x_j$$
$$\geq \sum_{j \in S} w_j(y) - c(y) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$

Next, if we show that

$$\sum_{j \in S} w_j(y) - c(y) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j \ge v^{y,t}(S), \quad \forall S \subseteq N$$

then we will have that

$$\sum_{j \in S} \left(w_j(y) + x_j \right) \ge v^{y,t}(S), \quad \forall S \subseteq N$$

which, by the definition of t-Core and its Remark, completes the proof of \Leftarrow).

If, on the contrary, $v^{y,t}(S)$ were greater, then we have

$$v^{y,t}(S) = \sum_{j \in S} w_j(y^S) - c(y^S) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$
$$> \sum_{j \in S} w_j(y) - c(y) + \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j$$

so that by t > 0 and by the definition of $v^{y,t}(S)$, it follows that $y^S > y$.

Then, by the monotonicity of w_j , we have $w_j(y) < w_j(y^S)$, so that

$$\sum_{j \in N \setminus S} w_j(y) + \left(\sum_{j \in S} w_j(y) - c(y)\right) < \sum_{j \in N \setminus S} w_j(y^S) + \left(\sum_{j \in S} w_j(y^S) - c(y^S)\right)$$

which contradicts that (y, x) is Pareto optimal.

Proof of \Rightarrow): Suppose that (y, x) is Pareto optimal and that for some $i \in N$ we have $x_i > (1 - t)m_i$, then for some nonempty $S \subsetneq N$, we must have that

$$\sum_{j \in N \setminus S} x_j > (1 - t) \sum_{j \in N \setminus S} m_j.$$

By this condition and the fact that (y, x) is feasible, we have

$$\sum_{j \in S} x_j + c(y) < \sum_{j \in S} m_j + t \sum_{j \in N \setminus S} m_j.$$

Then, there exists an (S, t)-feasible allocation (y', x'), it follows from the monotonicity of w_j that

$$v^{y,t}(S) > \sum_{j \in S} \left(w_j(y) + x_j \right).$$

Hence, $(y, x) \notin t$ – Core.

Corollary 1: Any t-Pareto optimal allocation belongs to the t-Core.

Corollary 2: $0 < t < t' \iff t$ -Core $\supseteq t'$ -Core

Remark:

- $t \simeq 0 \Rightarrow t\text{-Core} \neq \emptyset$
- $t = 1 \Rightarrow$ not necessarily t-Core $\neq \emptyset$. Allocation $((y, 0), \dots, (y, 0))$, with $y = c^{-1} \left(\sum_{j \in N} m_j \right)$ is generally not Pareto optimal.

Endogenous Tax Rate

Allocation
$$(y, x) \Rightarrow \text{Tax rate } t(y) = \frac{c(y)}{\sum_{j \in N} m_j}$$

Definition:
$$e$$
-Core := { $(y, x) | (y, x) \in t(y)$ - Core}

Proposition 2:

e-Core = {t(y)-Pareto optimal allocation }

Proof. By Proposition 1, t-Pareto optimal allocation belongs to the t-Core. Non-Pareto optimal allocations are dominated with respect to N, and allocations not t(y)-optimal allow for some player $i \in N$ with $x_i > (1 - t(y))m_i$, which, by Proposition 1, shows that t(y)-Core does not include it.

Illustration for 2-person case

