Shapley value

1. Shapley value

- Marginal contribution of player $i \in N$ towards coalition $S, i \notin S$ $v(S \cup \{i\}) - v(S)$
- given a permutation (or reordering) of players $\pi = (\pi(1), \pi(2), ..., \pi(n))$ contribution of player $\pi(k)$

 $v(\{\pi(1),...,\pi(k-1),\pi(k)\}) - v(\{\pi(1),...,\pi(k-1)\})$

- $\pi(1), ..., \pi(k-1)$: players that precede $\pi(k)$ according to permutation π
- contribution of i with respect to permutation π

 $v(P^{\pi,i} \cup \{i\}) - v(P^{\pi,i})$

 $P^{\pi,i}$: the set of players that precede i with respect to permutation π

• Shapley value of player i

 $\psi_i = \frac{1}{n!} \sum_{\pi \in \Pi} (v(P^{\pi,i} \cup \{i\}) - v(P^{\pi,i}))$ $\Pi : \text{set of all permutations}$

Shapley value

 $\psi = (\psi_1, ..., \psi_n)$

assuming that a permutation of a set of n players (n! of them) occurs with equal probability, Shapley value is each player's expected contribution

• Shapley value satisfies efficiency .

If (N, v) is supseradditive, then the Shapley value is individually rational; thus, it is an imputation .

• An alternative expression of the Shapley value
$$\begin{split} \psi_i &= \sum_{S:S \subseteq N, i \notin S} \frac{s!(n-s-1)!}{n!} (v(S \cup \{i\}) - v(S)) \\ &s &= |S| : \text{number of players in coalition } S \end{split}$$

• Fix a set of players N, Denote by V the set of all superadditive characteristic functions $v:2^N\to \Re$.

For every game $(N, v), v \in V$, let ϕ be a function $\phi: V \to \Re^n$ and $\phi(v) = (\phi_1(v), ..., \phi_n(v))$.

• Axioms

(a) Efficiency

For every $v \in V$, $\sum_{i \in N} \phi_i(v) = v(N)$

(b) Null Player Property

A player $i \in N$ is a **null player** $\Leftrightarrow v(S \cup \{i\}) - v(S) = 0 \ \forall S \subseteq N, i \notin S$ If player i is a null player, $\phi_i(v) = 0$

(c) Symmetry (Equal Treatment)

Players $i, j \in N$ are symmetric $\Leftrightarrow v(S \cup \{i\}) = v(S \cup \{j\}) \forall S \subseteq N, i, j \notin S$ If players i, j are symmetric, then $\phi_i(v) = \phi_j(v)$

(d) Additivity

For any two characteristic functions $v,u\in V,$ define $w\in V$ by $w(S)=v(S)+u(S)\;\forall S\subseteq N$. Then, $\phi(w)=\phi(v)+\phi(u)$

 $\bullet~$ Theorem

There is only function ϕ that satisfies efficiency, no award for null players, symmetry, and additivity and for each game (N, v), ϕ is given by

$$\phi_i(v) = \sum_{S:S \subseteq N, i \notin S} \frac{s!(n-s-1)!}{n!} (v(S \cup \{i\}) - v(S)) \ \forall i \in N$$