Problem Set 4

- 1. Find the nucleolus in 1 and 2 of Problem set 3.
- 2. Existence of the Nucleolus
 - (Problem) Show that for every $x \in A$, $\theta_i(x)$, $i = 1, ..., 2^n 2$ can be rewritten as

$$\theta_i(x) = \max_{\mathbf{S} \subset \mathbf{2}^{\mathbf{N}} \setminus \{\mathbf{N}, \emptyset\}, |\mathbf{S}| = \mathbf{i}}(\min_{s \in \mathbf{S}} e(S, x))$$

- $e(S, x) = v(S) \sum_{i \in S} x_i$ is a continuous function of x, since $\theta_i(x)$ is a max, min of a finite number of functions, θ_i is a continuous function of x.
- Define
 - $A^{1} = \{ x \in A | \theta_{1}(x) = \min_{y \in A} \theta_{1}(y) \}$ $A^{i} = \{ x \in A^{i-1} | \theta_{i}(x) = \min_{y \in A^{i-1}} \theta_{i}(y) \} \quad i = 2, ..., 2^{n} - 2$

A is compact, and $\theta_1(x)$ is continuous; thus, a minimizer for θ_i exists, and $A^1 \neq \emptyset$ and A^1 is compact. By the same argument, since $\theta_2(x)$ is continuous $A^2 \neq \emptyset$ and A^2 is compact. Repeating this process, $A^{2^n-2} \neq \emptyset$.

(Problem) Show that A^{2^n-2} coincides with the nucleolus .

- 3. Uniqueness of the nucleolus
 - Suppose that L has multiple imputations. (Show contradicition.) . Pick two imputations $x, y \in L$ and let z = (x + y)/2.
 - Define $\theta(x), \theta(y)$ in the following manner. $\theta(x) = (\theta_1(x), ..., \theta_{2^n-2}(x)) = (e(S_1, x), ..., e(S_{2^n-2}, x))$ $\theta(y) = (\theta_1(y), ..., \theta_{2^n-2}(y)) = (e(T_1, y), ..., e(T_{2^n-2}, y))$ Since x, y belong to $L, \theta_i(x) = \theta_i(y) \ \forall i = 1, ..., 2^n - 2$. Let $\theta(z) = (\theta_1(z), ..., \theta_{2^n-2}(z))$.
 - (Problem) Show that if $S_i = T_i \ \forall i = 1, ..., 2^n 2$, then x = y.
 - Since $x \neq y$, there exist $k, 0 \leq k \leq 2^n - 4$ such that $S_i = T_i \ \forall i = 1, ..., k$, $S_{k+1} \neq T_{k+1}$ Let k be as large as possible.
 - (Problem) Show that $\theta_i(x) = \theta_i(y) = \theta_i(z) \ \forall i = 1, ..., k.$
 - (Problem) Let $S = S_{k+1} = T_j$. Show that $j \ge k+2$ and $\theta_{k+1}(y) > \theta_j(y)$.
 - (Problem) Show that $\theta_{k+1}(z) < \theta_{k+1}(x)(=\theta_{k+1}(y)).$
 - This contradicts $x, y \in L$. (QED)