Games in Characteristic Function Form

1. Chataceristic Function Form Games

- $(N=\{1,2, \ldots, n\}, v)$ $N=\{1,2, \ldots, n\} \quad$: set of players $v: 2^{N} \rightarrow \Re \quad:$ characteristic function 2^{N} : collection of subsets of $N, S \subseteq N$: coalition
- $v(S)$: the maximum payoff that a coalition S can guarantee
- (N, v) is a superadditive game \Leftrightarrow

$$
\text { for every } S, T \subseteq N, S \cap T=\emptyset,, v(S)+v(T) \leq v(S \cup T)
$$

- V^{N} :set of all superadditive functions on N
- For $v, v^{\prime} \in V^{N}, v^{\prime}$ is strategically equivalent to v if there exist $c>0$ and a_{1}, \ldots, a_{n} such that

$$
v^{\prime}(S)=c v(S)+\sum_{i \in S} a_{i}
$$

Denote it by $v^{\prime} \sim v$.

- ~ satisfies
- (symmetry) For any $v \in V^{N}, v \sim V$.
- (reflexivity) For any $v, v^{\prime} \in V^{N}, v \sim v^{\prime} \Leftrightarrow v^{\prime} \sim v$.
- (transitivity) For any $v, v^{\prime}, v^{\prime \prime} \in V^{N}, v \sim v^{\prime}, v^{\prime} \sim v^{\prime \prime} \rightarrow v \sim v^{\prime \prime}$
- By reflexivity, we simply say v and v^{\prime} are strategically equivalent, in case $v \sim v^{\prime}$.
- For $v \in V^{N}$,

$$
v^{\prime}(S)=v(S)-\sum_{i \in S} v(\{i\})
$$

is called 0 -normalization ov v.
2. Imputation

- $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right):$ payoff vector
payoff vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an imputation of $(N, v) \Leftrightarrow$
$\sum_{i=1}^{n} x_{i}=v(N)$ (efficiency, group rationality)
$x_{i} \geq v(\{i\}) \forall i=1, \ldots, n \quad$ (individual rationality)
- Set of imputations of $(N, v), A(v)$, can be expressed as

$$
A(v)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Re^{n} \mid \sum_{i=1}^{n} x_{i}=v(N), x_{i} \geq v(\{i\}) \forall i=1, \ldots, n\right\}
$$

- Set of Imputations are not affected by strategic equivalence.

Let $v^{\prime}(S)=c v(S)+\sum_{i \in S} a_{i} \forall S \in N$. Then

$$
A\left(v^{\prime}\right)=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \Re^{n} \mid y_{i}=c x_{i}+a_{i} \forall i \in N \text { forsomex } \in A(v)\right\}
$$

is an imputation set of $\left(N, v^{\prime}\right)$.
3. Examples
(a) Players 1,2 and 3 earned 1 million JPY. A majority group (i.e. a coalition with two players or more) can get the whole amount.
(b) Players 1, 2 and 3 earned 1 million JPY. Player 1 has a veto. Thus a majority group with player 1 can get the whole amount.
(c) Each of three towns 1,2 and 3 plans to increase water supply. It will cost 140 million JPY for town 1, 160 million JPY for town 2 and 200million JPY for town 3. If neiboring towns 1 and 2 cooperate, the cost will be down to 240 million JPY. Similarly, the cost will be 280 million JPY for cooperation of town 2 and 3 . Towns 1 and 3 cannot reduce the cost even if they cooperate because of the geographical reason. If all of the three towns cooperate, the total cost will be down to 300 million JPY.

