Two-person Bargaining Game

1. Two-person Strategic Form Game

$$
\begin{aligned}
(N= & \left.\{1,2\},\left(S_{1}=\left\{s_{1}, \ldots, s_{m}\right\}, S_{2}=\left\{t_{1}, \ldots, t_{n}\right\}\right),\left(g_{1}, g_{2}\right)\right) \\
& g_{1}\left(s_{i}, t_{j}\right)=a_{i j}, g_{2}\left(s_{i}, t_{j}\right)=b_{i j}
\end{aligned}
$$

(a) Correlated Strategy
$r=\left(r_{11}, \ldots, r_{m n}\right), \sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j}=1, r_{i j} \geq 0, i=1, \ldots, m, j=1, \ldots, n$ $r_{i j}$: probability that $\left(s_{i}, t_{j}\right)$ is chosen
(b) Expected Payoff
$u_{1}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} r_{i j}, u_{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j} r_{i j}$
(c) Feasible Set
$R=\left\{u=\left(u_{1}, u_{2}\right) \mid u_{1}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} r_{i j}, u_{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j} r_{i j}\right\}$
(d) Disagreement Point $u^{0}=\left(u_{1}^{0}, u_{2}^{0}\right)$
(e.g. maximin value, minimax value, Nash equilibrium outcome)
2. Bargaining Problem $\left(R, u^{0}\right)$
(a) R : a convex and compact (closed and bounded) subset of \Re^{2} (two-dimensional Euclidean space)
(b) $u^{0} \in R$
(c) there is a $u=\left(u_{1}, u_{2}\right) \in R$ such that $u_{1}>u_{1}^{0}, u_{2}>u_{2}^{0}$

Denote by \mathcal{B} the set of all bargaining problems $\left(R, u^{0}\right)$

- R is convex \Leftrightarrow for any $u, v \in R$ and for any $\alpha(0 \leq \alpha \leq 1), \alpha u+(1-\alpha) v \in R$
- R is bounded \Leftrightarrow there exists $M \in \Re_{+}$such that for any $u=\left(u_{1}, u_{2}\right) \in R,-M \leq$ $u_{1}, u_{2} \leq M$
- R is closed \Leftrightarrow for any sequence $u^{1}, u^{2}, \ldots \in R$ such that $\lim _{n \rightarrow \infty}=u, u \in R$.

3. Nash Bargaining Solution

A function $f: \mathcal{B} \rightarrow \Re^{2}$ that satisfies the following four axioms:
(a) (Strong) Pareto optimality

For every $\left(R, u^{0}\right) \in B$
$f\left(R, u^{0}\right)=\left(f\left(R, u^{0}\right)_{1}, f\left(R, u^{0}\right)_{2}\right)$ must be a strong Pareto optimal alternative in R.
(Definition of Strong Pareto Optimality)
$u=\left(u_{1}, u_{2}\right)$ is (strong) Pareto optimal in $R \Leftrightarrow$ if there is a $u^{\prime} \in R$ with $u_{1}^{\prime} \geq u_{1}, u_{2}^{\prime} \geq u_{2}$, then $u^{\prime}=u$
(b) Symmetry

If $\left(R, u^{0}\right)$ is symmetric then $f\left(R, u^{0}\right)_{1}=f\left(R, u^{0}\right)_{2}$
(Definition of Symmetry for $\left(R, u^{0}\right)$
(R, u^{0}) is symmetric \Leftrightarrow
(1)if $\left(u_{1}, u_{2}\right) \in R$, then $\left(u_{2}, u_{1}\right) \in R$
(2) $u_{1}^{0}=u_{2}^{0}$
(c) Independence of Strictly Positive Affine Transformation

For (R, u^{0}) define (R^{\prime}, u^{0}) as follows
$R^{\prime}=\left\{u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}\right) \mid u_{1}^{\prime}=\alpha_{1} u_{1}+\beta_{1}, u_{2}^{\prime}=\alpha_{2} u_{2}+\beta_{2}, u=\left(u_{1}, u_{2}\right) \in R\right\}$
$u_{1}^{0}=\alpha_{1} u_{1}^{0}+\beta_{1}$,
$u_{2}^{\prime 0}=\alpha_{2} u_{2}^{0}+\beta_{2}$
$\alpha_{1}>0, \alpha_{2}>0, \beta_{1}, \beta_{2}$ are constants
$f\left(R^{\prime}, u^{\prime 0}\right)_{1}=\alpha_{1} f\left(R, u^{0}\right)_{1}+\beta_{1}$,
$f\left(R^{\prime}, u^{\prime 0}\right)_{2}=\alpha_{2} f\left(R, u^{0}\right)_{2}+\beta_{2}$
(d) Independence of Irrelevant Alternatives

For $\left(R, u^{0}\right)$ if there exists $T \subseteq R$ such that $f\left(R, u^{0}\right) \in T, u^{0} \in T$, then $f\left(T, u^{0}\right)=f\left(R, u^{0}\right)$

4. Existence and Uniqueness of Nash Bargaining Solution

There exists a unique $f: \mathcal{B} \rightarrow \Re^{2}$ that satisfies the above four axioms. Moreover, for any bargaining problem $\left(R, u^{0}\right) \in \mathcal{B} f\left(R, u^{0}\right)$ solves

$$
\max \left\{\left(u_{1}-u_{1}^{0}\right)\left(u_{2}-u_{2}^{0}\right) \mid\left(u_{1}, u_{2}\right) \in R, u_{1} \geq u_{1}^{0}, u_{2} \geq u_{2}^{0}\right\}
$$

This f is the Nash bargaining solution.
5. Non-cooperative game theoretic approaches to the Nash bargaining solution
"Introduction to Game Theory p.68, Problem 2"
Two players 1 and 2 negotiate on how to share 1,000,000 JPY. Any sharing the total of which is less than or equal to $1,000,000 \mathrm{JPY}$ is allowed; and if they do not reach any agreement, they obtain nothing.
(a) Bargaining game

Feasible set $R=\left\{\left(u_{1}, u_{2}\right) \in \Re^{2} \mid u_{1}+u_{2} \leq 100,0 \leq u_{1}, u_{2}\right\}$
disagreement point $u^{0}=\left(u_{1}^{0}, u_{2}^{0}\right)=(0,0)$ From the Pareto optimality and the symmetry, the Nash bargaining solution should be $u^{*}=\left(u_{1}^{*}, u_{2}^{*}\right)=(50,50)$
(b) Nash's idea

Each of the players 1 and 2 announces his/her own demand $u_{1}, u_{2} \geq 0$ simultaneously and independently. If $u_{1}+u_{2} \leq 100$, then each player obtains his/her own demand.

If $u_{1}+u_{2}>100$, then each of them obtains 0 .
In this non-cooperative game, there are many Nash equilibria including the Nash bargainng solution $(50,50)$ (Refer to "Introduction to Game Theory, p.235")
(c) Rubinstein's idea

The 1st period : Player 1 proposes (u_{1}^{1}, u_{2}^{1}). If player 2 accepts the proposal, player 1 and 2 obtain u_{1}^{1} and u_{2}^{1} respectively, and the game ends. If he/she rejects, they go to the 2 nd period.
The second period: Player 2 proposes $\left(u_{1}^{2}, u_{2}^{2}\right)$. If player 1 accepts the proposal, player 1 and 2 obtain u_{1}^{2} and u_{2}^{2} respectively, and the game ends. If he/she rejects, they go to the 3rd period.
The third period: Player 1 proposes $\left(u_{1}^{3}, u_{2}^{3}\right)$, player 2 decides whether to accept or not.
Repeat the prcedure until one of the players accepts another player's proposal.
Let each player's payoff be 0 in case the negotiation never ends. Introduce the discount factor $\delta, 0<\delta<1$, and consider the dicounted payoff. Thus the payoffs in the 2nd period are $\left(\delta u_{1}^{2}, \delta u_{2}^{2}\right)$, and the payoffs in the third stage are は $\left(\delta^{2} u_{1}^{3}, \delta^{2} u_{2}^{3}\right)$.
The subgame perfect equilibrium of the game converges to the Nash bargaining solution $(50,50)$ when $\delta \rightarrow 1$.

