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+
αk(1− αk)γk

γk+1

(
⟨f ′(yk),vk − yk⟩+

µ

2
∥yk − vk∥2

)
≥ (1− αk)f(xk) + αkf(yk)−

α2
k

2γk+1

∥f ′(yk)∥2

+
αk(1− αk)γk

γk+1

(
⟨f ′(yk),vk − yk⟩+

µ

2
∥yk − vk∥2

)
.

Now, since f(x) is convex, f(xk) ≥ f(yk) + ⟨f ′(yk),xk − yk⟩, and we have:

ϕ∗
k+1 ≥ f(yk)−

α2
k

2γk+1

∥f ′(yk)∥2+(1−αk)⟨f ′(yk),
αkγk
γk+1

(vk−yk)+xk−yk⟩+
αk(1− αk)γkµ

2γk+1

∥yk−vk∥2.

Recall that since f ′ is L-Lipschitz continuous, if we apply Theorem 2.1.8 to yk and xk+1 =
yk − 1

L
f ′(yk), we obtain

f(yk)−
1

2L
∥f ′(yk)∥2 ≥ f(xk+1).

Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1

=
1

2L

it justifies our choice for αk. Since µ ≥ 0, we finally obtain ϕ∗
k+1 ≥ f(xk+1) as wished.

Now, γk+1 = Lα2
k = (1− αk)γk + αkµ, and since L ≥ γ0 ≥ µ, we have αk ∈ [

√
µ
L
, 1) and

L ≥ γk ≥ µ. Therefore,
∑∞

k=1 αk = ∞.

We arrive finally at the following optimal gradient method

General Scheme for the Optimal Gradient Method
Step 0: Choose x0 ∈ Rn, L ≥ γ0 ≥ µ ≥ 0, set v0 := x0, k := 0
Step 1: Compute αk ∈ [

√
µ
L
, 1) from the equation Lα2

k = (1− αk)γk + αkµ

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ

Step 3: Compute f(yk) and f ′(yk)
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L
∥f ′(yk)∥2 using “line search”

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αkf

′(yk)

γk+1
, k := k + 1 and go to Step 1

Theorem 2.6.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈
F1,1L(Rn)). The general scheme of the optimal gradient method generates a sequence
{xk}∞k=1 such that

f(xk)− f ∗ ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥2 − f ∗

]
,

where λ0 = 1 and λk = Πk−1
i=0 (1− αi). Moreover,

λk ≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}
.
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Proof: The first part is obvious from the definition and Lemma 2.6.2.
We already now that αk ≥

√
µ
L
, therefore,

λk = Πk−1
i=0 (1− αi) ≤

(
1−

√
µ

L

)k

.

Let us prove first that γk ≥ γ0λk. Obviously γ0 = γ0λ0, and assuming the induction
hypothesis,

γk+1 = (1− αk)γk + αkµ ≥ (1− αk)γk ≥ (1− αk)γ0λk = γ0λk+1.

Therefore, Lα2
k = γk+1 ≥ γ0λk+1. Since λk is a decreasing sequence

1√
λk+1

− 1√
λk

=

√
λk −

√
λk+1√

λkλk+1

=
λk − λk+1√

λkλk+1(
√
λk +

√
λk+1)

≥ λk − λk+1

2λk

√
λk+1

=
λk − (1− αk)λk

2λk

√
λk+1

=
αk

2
√
λk+1

≥ 1

2

√
γ0
L
.

Thus
1√
λk

≥ 1 +
k

2

√
γ0
L

and we have the result.

Theorem 2.6.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈
F1,1L(Rn)). If we take γ0 = L, the general scheme of the optimal gradient method generates
a sequence {xk}∞k=1 such that

f(xk)− f ∗ ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥2.

This means that it is optimal for the class of functions from S1,1
µ,L(R

n) with µ > 0, or

F1,1
L (Rn).

Proof: The inequality follows from the previous theorem and f(x0) − f(x∗) ≤
⟨f ′(x∗),x0 − x∗⟩+ L

2
∥x0 − x∗∥2.

Let us analyze first the case when µ > 0. From Theorem 2.4.1, we know that we can
find functions such that

f(xk)− f ∗ ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥2 ≥ µ

2
exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥2,

where the second inequality follows from ln(a−1
a+1

) = − ln(a+1
a−1

) ≥ 1 − a+1
a−1

≥ − 2
a−1

, for
a ∈ (1,+∞). Therefore, the worst case bound to find xk such that f(xk)− f ∗ < ε can not
be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ ln

µ

2
+ 2 ln ∥x0 − x∗∥

)
.



40 CHAPTER 2. SMOOTH CONVEX OPTIMIZATION

On the other hand, from the above result

f(xk)− f ∗ ≤ L∥x0 − x∗∥2
(
1−

√
µ

L

)k

≤ L∥x0 − x∗∥2 exp

(
− k√

L/µ

)
,

where the second inequality follows from ln(1 − a) ≤ −a, a < 1.Therefore, we can guar-
antee that k ≥

√
L/µ

(
ln 1

ε
+ lnL+ 2 ln ∥x0 − x∗∥

)
.

For the case µ = 0, the conclusion is obvious from Theorem 2.2.1.

Now, instead of doing line search at Step 4 of the general scheme for the optimal gradient
method, let us consider the constant step size iteration xk+1 = yk − 1

L
f ′(yk). From the

calculation given at Exercise 9, we arrive to the following simplified scheme:

Constant Step Scheme for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that µ ≤ α0(α0L−µ)
1−α0

≤ L, set y0 := x0, k := 0

Step 1: Compute f(yk) and f ′(yk)
Step 2: Set xk+1 := yk − 1

L
f ′(yk)

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k + µαk+1/L

Step 4: Set βk :=
αk(1−αk)

α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1

The rate of convergence of the above method is the same as Theorem 2.6.6 for γ0 =
α0(α0L− µ)/(1− α0), and of the Theorem 2.6.7.

2.7 Extension for “simple” convex sets

We are interested now to solve the following problem:{
min f(x)

x ∈ Q
(2.6)

where Q is a closed convex set simple enough to have an easy projection onto it, e.g., positive
orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 2.7.1 Let f ∈ F1(Rn) and Q be a closed convex set. The point x∗ is a solution
of (2.6) if and only if

⟨f ′(x∗),x− x∗⟩ ≥ 0, ∀x ∈ Q.

Proof: Indeed, if the inequality is true,

f(x) ≥ f(x∗) + ⟨f ′(x∗),x− x∗⟩ ≥ f(x∗) ∀x ∈ Q.

Let x∗ be an optimal solution of the minimization problem (2.6). Assume by con-
tradiction that there is a x ∈ Q such that ⟨f ′(x∗),x − x∗⟩ < 0. Consider the function
ϕ(α) = f(x∗+α(x−x∗)) for α ∈ [0, 1]. Then, ϕ(0) = f(x∗) and ϕ′(0) = ⟨f ′(x∗),x−x∗⟩ < 0.
Therefore, for α > 0 small enough, we have

f(x∗ + α(x− x∗)) = ϕ(α) < ϕ(0) = f(x∗)

which is a contradiction.



2.7. EXTENSION FOR “SIMPLE” CONVEX SETS 41

Definition 2.7.2 Let f ∈ C1(Rn), Q a closed convex set, x̄ ∈ Rn, and γ > 0. Denote by

xQ(x̄; γ) = arg minx∈Q

[
f(x̄) + ⟨f ′(x̄),x− x̄⟩+ γ

2
∥x− x̄∥2

]
,

gQ(x̄; γ) = γ(x̄− xQ(x̄; γ)).

We call gQ(x̄; γ) the gradient mapping of f on Q.

Theorem 2.7.3 Let f ∈ S1,1
µ,L(R

n), γ ≥ L, and x̄ ∈ Rn. Then

f(x) ≥ f(xQ(x̄; γ)) + ⟨gQ(x̄; γ),x− x̄⟩+ 1

2γ
∥gQ(x̄; γ)∥2 +

µ

2
∥x− x̄∥2, ∀x ∈ Q.

Proof: Denote xQ = xQ(x̄; γ) and gQ = gQ(x̄; γ). Let ϕ(x) = f(x̄) + ⟨f ′(x̄),x− x̄⟩+
γ
2
∥x− x̄∥2.
Then ϕ′(x) = f ′(x̄) + γ(x− x̄), and for ∀x ∈ Q, we have

⟨f ′(x̄)− gQ,x− xQ⟩ = ⟨ϕ′(xQ),x− xQ⟩ ≥ 0,

due to Lemma 2.7.1.
Hence,

f(x)− µ

2
∥x− x̄∥2 ≥ f(x̄) + ⟨f ′(x̄),x− x̄⟩

= f(x̄) + ⟨f ′(x̄),x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩
≥ f(x̄) + ⟨gQ,x− xQ⟩+ ⟨f ′(x̄),xQ − x̄⟩

= ϕ(xQ)−
γ

2
∥xQ − x̄∥2 + ⟨gQ,x− xQ⟩

= ϕ(xQ)−
1

2γ
∥gQ∥2 + ⟨gQ,x− xQ⟩

= ϕ(xQ)−
1

2γ
∥gQ∥2 + ⟨gQ, x̄− xQ⟩+ ⟨gQ,x− x̄⟩

= ϕ(xQ) +
1

2γ
∥gQ∥2 + ⟨gQ,x− x̄⟩.

Since γ ≥ L, ϕ(xQ) ≥ f(xQ), and we have the result.

We are ready to define our estimated sequence. Assume that f ∈ S1,1
µ,L(R

n) possible with

µ = 0 (which means that f ∈ F1,1
L (Rn)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) = f(x0) +
γ0
2
∥x− x0∥2,

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(xQ(yk;L)) +

1

2L
∥gQ(yk;L)∥2 + ⟨gQ(yk;L),x− yk⟩

+
µ

2
∥x− yk∥2

]
,
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for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥2

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkgQ(yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xQ(yk;L)) +

(
αk

2L
− α2

k

2γk+1

)
∥gQ(yk;L)∥2

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥2 + ⟨gQ(yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xQ(yk;L)) +

(
αk

2L
− α2

k

2γk+1

)
∥gQ(yk;L)∥2

+
αk(1− αk)γk

γk+1

⟨gQ(yk;L),vk − yk⟩

≥ f(xQ(yk;L)) +

(
1

2L
− α2

k

2γk+1

)
∥gQ(yk;L)∥2

+(1− αk)⟨gQ(yk;L),
αkγk
γk+1

(vk − yk) + xk − yk⟩,

where the last inequality follows from Theorem 2.7.3.
Therefore, if we choose

xk+1 = xQ(yk;L),

Lα2
k = (1− αk)γk + αkµ ≡ γk+1,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),

we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Constant Step Scheme for the Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that µ ≤ α0(α0L−µ)
1−α0

≤ L, set y0 := x0, k := 0

Step 1: Compute f(yk) and f ′(yk)
Step 2: Set xk+1 := xQ(yk;L)
Step 3: Compute αk+1 ∈ (0, 1) from the equation α2

k+1 = (1− αk+1)α
2
k + µαk+1/L

Step 4: Set βk :=
αk(1−αk)

α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1

The rate of converge of this algorithm is exactly the same as the previous ones.
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2.8 Further reading

1. Obviously, the first reading should be the continuation of [NESTEROV2004], where
Nesterov extends the method for constrained minimization, min-max type problems,
and non-differentiable problems.

2. A more general approach and variations can be found in [DASPREMONT2008, LLM2006,
NESTEROV2005, NESTEROV2005-2, NESTEROV2007, NESTERVO2009, TSENG2010],
etc.

2.9 Exercises

1. Prove Theorem 2.1.2.

2. Prove Lemma 2.1.3.

3. Prove Theorem 2.1.5.

4. Prove Corollary 2.3.3.

5. Prove Theorem 2.3.4.

6. Prove Theorem 2.3.6.

7. Prove Corollary 2.5.2.

8. Complete the prove of Lemma 2.6.3.

9. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This
is a particular case of the general optimal gradient method for the following choice:

γk+1 ≡ Lα2
k = (1− αk)γk + αkµ

yk =
αkγkvk + γk+1xk

γk + αkµ

xk+1 = yk −
1

L
f ′(yk)

vk+1 =
(1− αk)γkvk + αkµyk − αkf

′(yk)

γk+1

.

(a) Show that vk+1 = xk +
1
αk
(xk+1 − xk).

(b) Show that yk+1 = xk+1 + βk(xk+1 − xk) for βk =
αk+1γk+1(1−αk)

αk(γk+1+αk+1µ)
.

(c) Show that βk =
αk(1−αk)

α2
k+αk+1

.

(d) Explain why α2
k+1 = (1− αk+1)α

2
k +

µ
L
αk+1.


