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Proof: See [YUAN2010].

• Note that the previous result for the gradient method Theorem 1.5.5 was only a local
result.

• Comparing the rate of convergence of the gradient method for the classes F1,1
L (Rn)

and S1,1
µ,L(R

n), Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity
bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an
estimate sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

Lemma 2.6.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence
{xk}∞k=1 we have

f(xk) ≤ ϕ∗
k ≡ min

x∈Rn
ϕk(x)

then f(xk)− f ∗ ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof: It follows from the definition.

Lemma 2.6.3 Assume that

1. f ∈ S1
µ(R

n), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=0 is an arbitrary sequence such that αk ∈ (0, 1),
∑∞

k=0 αk = ∞, and α−1 = 0.

Then the pair of sequences {Πk−1
i=−1(1− αi)}∞k=0 and {ϕk(x)}∞k=0 recursively defined as

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥2

]

is an estimate sequence.



36 CHAPTER 2. SMOOTH CONVEX OPTIMIZATION

Proof: Let us prove by induction on k. For k = 0, ϕ0(x) = (1− (1− α−1)) f(x) +
(1−α−1)ϕ0(x) since α−1 = 1. Suppose that the induction hypothesis is valid for k. Since
f ∈ S1

µ(R
n),

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥2

]
≤ (1− αk)ϕk(x) + αkf(x)

=
(
1− (1− αk)Π

k−1
i=−1(1− αi)

)
f(x) + (1− αk)

(
ϕk(x)− (1− Πk−1

i=−1(1− αi))f(x)
)

≤
(
1− (1− αk)Π

k−1
i=−1(1− αi)

)
f(x) + (1− αk)Π

k−1
i=−1(1− αi)ϕ0(x)

=
(
1− Πk

i=−1(1− αi)
)
f(x) + Πk

i=−1(1− αi)ϕ0(x).

The remaining part is left for exercise.

Lemma 2.6.4 Let γ0, ϕ
∗
0 ∈ R, µ ∈ R (possible with µ = 0), v0 ∈ Rn, and {yk}∞k=0 a given

arbitrarily sequence. Define ϕ0(x) = ϕ∗
0+

γ0
2
∥x−v0∥2. If we define recursively ϕk+1(x) such

as the previous lemma:

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨f ′(yk),x− yk⟩+

µ

2
∥x− yk∥2

]
,

for an arbitrary sequence {αk}∞k=0 such that αk ∈ (0, 1) and
∑∞

k=0 αk = ∞. Then ϕk+1(x)
preserve the canonical form

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥2 (2.3)

for

γk+1 = (1− αk)γk + αkµ,

vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1

∥f ′(yk)∥2

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥2 + ⟨f ′(yk),vk − yk⟩

)
.

Proof: We will use again the induction hypothesis in k. Note that ϕ′′
0(x) = γ0I.

Now, for any k ≥ 0,

ϕ′′
k+1(x) = (1− αk)ϕ

′′
k(x) + αkµI = ((1− αk)γk + αkµ) I = γk+1I.

Therefore, ϕk+1(x) is a quadratic function of the form (2.3). From the first-order opti-
mality condition

ϕ′
k+1(x) = (1− αk)ϕ

′
k(x) + αkf

′(yk) + αkµ(x− yk)

= (1− αk)γk(x− vk) + αkf
′(yk) + αkµ(x− yk) = 0.
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Thus,

x = vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)]

is the minimal optimal solution of ϕk+1(x).
Finally, from what we proved so far and from the definition

ϕk+1(yk) = ϕ∗
k+1 +

γk+1

2
∥yk − vk+1∥2

= (1− αk)ϕk(yk) + αkf(yk)
= (1− αk)

(
ϕ∗
k +

γk
2
∥yk − vk∥2

)
+ αkf(yk).

(2.4)

Now,

vk+1 − yk =
1

γk+1

[(1− αk)γk(vk − yk)− αkf
′(yk)] .

Therefore,

γk+1

2
∥vk+1 − yk∥2 = 1

2γk+1
[(1− αk)

2γ2
k∥vk − yk∥2 + α2

k∥f ′(yk)∥2

−2αk(1− αk)γk⟨f ′(yk),vk − yk⟩] .
(2.5)

Substituting (2.5) into (2.4), we obtain the expression for ϕ∗
k+1.

Theorem 2.6.5 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈
F1,1

L (Rn)). For a given x0,v0 ∈ Rn and L ≥ γ0 ≥ µ ≥ 0, let us choose ϕ∗
0 = f(x0).

Define the sequences {αk}∞k=0, {γk}∞k=0, {yk}∞k=0, {xk}∞k=0, {vk}∞k=0, {ϕ∗
k}∞k=0, and {ϕk}∞k=0

as follows:

αk ∈ (0, 1) root of Lα2
k = (1− αk)γk + αkµ ≡ γk+1,

yk =
αkγkvk + γk+1xk

γk + αkµ
,

xk is such that f(xk+1) ≤ f(yk)−
1

2L
∥f ′(yk)∥2,

vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1

∥f ′(yk)∥2

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥2 + ⟨f ′(yk),vk − yk⟩

)
,

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥2.

Then, we satisfy all the conditions of Lemma 2.6.2.

Proof: In fact, it just remains to show that f(xk) ≤ ϕ∗
k and

∑∞
k=1 αk = ∞.

For k = 0, f(x0) ≤ ϕ∗
0. Suppose that induction hypothesis is valid for k, and due to the

previous lemma,

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1

∥f ′(yk)∥2


