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Proof:  See [YUAN2010]. 1

e Note that the previous result for the gradient method Theorem 1.5.5 was only a local
result.

e Comparing the rate of convergence of the gradient method for the classes F 1L’1(]R”)

and Si’}L(R"), Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity
bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences {¢r(x)}72, and {A\g}72, with Ay > 0 is called an
estimate sequence of the function f(x) if

/\k: — 0,
and for any & € R" and any k& > 0, we have
Pr(x) < (1= M) f(®) + Ao ().

Lemma 2.6.2 Given an estimate sequence {¢x(x)}72,, { i }rre, and if for some sequence
{z,}72, we have

flzr) < @) = mﬂelﬁln or(x)

then f(@r) — f* < Ak(¢o(x”) — f(27)) = 0.
Proof: 1t follows from the definition. 1
Lemma 2.6.3 Assume that
1. f €8, (R"), possible with s = 0 (which means that f € F'(R")).
2. ¢o(x) is an arbitrary function on R".
3. {y, )32, is an arbitrary sequence in R".
4. {a}p2, is an arbitrary sequence such that oy € (0,1), D7, o = 00, and a_y = 0.

Then the pair of sequences {II"-1 (1 — ;) 152, and {¢p(x)}52, recursively defined as

dra(@) = (1= aon(®@) +an [Fw) + (W)@ — yi) + Sl =yl

is an estimate sequence.
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Proof:  Let us prove by induction on k. For k =0, ¢p(x) = (1 — (1 —a_y)) f(x) +
(1 —a_1)¢o(x) since a—; = 1. Suppose that the induction hypothesis is valid for k. Since
feSRY),

@) = (1= aonl@) + i [flye) + ()@ - y) + Lo~y
< (1= on)ou(x) + anf(x)
= (1= =o)L (1= a9) fla) + (1 — ) (¢>k(w) (-4 (1 - o) f(=))
< (1= (1 =enIGZh (1= ) fl) + (1= a)IE2L (1 - aq)do(@)
= (1 - Hff—1 I ozz)) f(x) + Hff—l(l — a;)do(x).
The remaining part is left for exercise. 1

Lemma 2.6.4 Let 70, ¢§ € R, u € R (possible with p = 0), vo € R", and {y, }?°, a given
arbitrarily sequence. Define ¢o(x) = ¢+ 2 ||x —vol|?. If we define recursively ¢y, () such
as the previous lemma:

pr1(x) = (1 — aw)ow(x) + an [ f(yr) + (' (Ye). & — yp) + g||m — yil?

for an arbitrary sequence {ay}7°, such that ay € (0,1) and >~ o = co. Then ¢pyq(x)
preserve the canonical form

Ge1(@) = Gy + T @ — v (2.3)
for
Yirr = (I —aw)ve + arp,
Vg1 = %{%1[(1 — o)k + oy — arf(yp)l,
Grr1 = (1 —aw)dp +anflyy) — "(y) I

(1 — ap) e (1
+ I (Dl —wnl? 4+ (F (i) v — )
Ve+1

Proof: ~ We will use again the induction hypothesis in k. Note that ¢f(x) = ~oI.
Now, for any k£ > 0,

() = (1 — o)ty () + appd = (1 — o) vk + cpe) I = i I

Therefore, ¢r.1(x) is a quadratic function of the form (2.3). From the first-order opti-
mality condition

() = (1 —ap)dy(x) + arf(yx) + (T — yy)
= (1 —ap)m(x —vp) + o f'(y,) + cwp(x —y,) = 0.
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Thus,

T =V = (1 — ap)vevr + arpyy, — arf'(y)]

V41
is the minimal optimal solution of ¢541(x).
Finally, from what we proved so far and from the definition

Per1(Ye) = G + 55 Y — vera|?

= (1 —ap)dn(ye) + o f(yy) (2.4)

= (L—aw) (0% + Fllye — vall?) + anf(yp).
Now,

Vit — Y = (1 = aw) vk — yp) — arf'(yp)] -
Ve+1
Therefore,
—20a,(1 — ) f' (Yr)s vk — Yi)] -

Substituting (2.5) into (2.4), we obtain the expression for ¢j . 1

Theorem 2.6.5 Consider f € Si’}L(R”), possible with g = 0 (which means that f €
FpHR™). For a given xg,vo € R and L > v, > p > 0, let us choose ¢ = f(axg).

Define the sequences {ax}p2g, {Ve}ios {Urtizo: {&r}i2o, {vr}i20, {95}020, and {dr}72,
as follows:

ar € (0,1)  root of  Lai = (1 — o)V + Qft = Vit
QRVEVE + V1T

Y =

Ve + Qi
) 1
xy is such that f(xr11) < f(y) — ﬁHf’(yk)HQ,
1
Vig1 = (1 — ap)nvr + arpye — arf (Y,
Vk+1
* * a% !/ 2
¢k+1 = (1 - ak)¢k + akf(?!k:) T 9 ||f (yk)H
Vk+1
ap(l —ag)v (1
L O (B 4 () o))
Ve+1
* Ve+1
Ger1() = Ppg + TJer — v |%.

Then, we satisfy all the conditions of Lemma 2.6.2.

Proof: In fact, it just remains to show that f(xy) < ¢} and > ;- a = 0.
For k =0, f(xy) < ¢§. Suppose that induction hypothesis is valid for k, and due to the
previous lemma,

2
oy

Ops1 = (I —an)op +onf(y,) — 1 (i) II”

2V



