Proof: See [YUAN2010].

- Note that the previous result for the gradient method Theorem 1.5.5 was only a local result.
- Comparing the rate of convergence of the gradient method for the classes $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ with $\lambda_{k} \geq 0$ is called an estimate sequence of the function $f(\boldsymbol{x})$ if

$$
\lambda_{k} \rightarrow 0
$$

and for any $\boldsymbol{x} \in \mathbb{R}^{n}$ and any $k \geq 0$, we have

$$
\phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) .
$$

Lemma 2.6.2 Given an estimate sequence $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty},\left\{\lambda_{k}\right\}_{k=0}^{\infty}$, and if for some sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ we have

$$
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*} \equiv \min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x})
$$

then $f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{*}\right)\right) \rightarrow 0$.
Proof: It follows from the definition.
Lemma 2.6.3 Assume that

1. $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}^{1}\left(\mathbb{R}^{n}\right)$).
2. $\phi_{0}(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^{n}.
3. $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^{n}.
4. $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ is an arbitrary sequence such that $\alpha_{k} \in(0,1), \sum_{k=0}^{\infty} \alpha_{k}=\infty$, and $\alpha_{-1}=0$. Then the pair of sequences $\left\{\Pi_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right\}_{k=0}^{\infty}$ and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ recursively defined as

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}\right]
$$

is an estimate sequence.

Proof: Let us prove by induction on k. For $k=0, \phi_{0}(\boldsymbol{x})=\left(1-\left(1-\alpha_{-1}\right)\right) f(\boldsymbol{x})+$ $\left(1-\alpha_{-1}\right) \phi_{0}(\boldsymbol{x})$ since $\alpha_{-1}=1$. Suppose that the induction hypothesis is valid for k. Since $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}\right] \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) \\
& =\left(1-\left(1-\alpha_{k}\right) \Pi_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right)\left(\phi_{k}(\boldsymbol{x})-\left(1-\Pi_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})\right) \\
& \leq\left(1-\left(1-\alpha_{k}\right) \Pi_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right) \Pi_{i=-1}^{k-1}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) \\
& =\left(1-\Pi_{i=-1}^{k}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\Pi_{i=-1}^{k}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) .
\end{aligned}
$$

The remaining part is left for exercise.
Lemma 2.6.4 Let $\gamma_{0}, \phi_{0}^{*} \in \mathbb{R}, \mu \in \mathbb{R}$ (possible with $\mu=0$), $\boldsymbol{v}_{0} \in \mathbb{R}^{n}$, and $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ a given arbitrarily sequence. Define $\phi_{0}(\boldsymbol{x})=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|^{2}$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|^{2}\right],
$$

for an arbitrary sequence $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ such that $\alpha_{k} \in(0,1)$ and $\sum_{k=0}^{\infty} \alpha_{k}=\infty$. Then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$
\begin{equation*}
\phi_{k+1}(\boldsymbol{x})=\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|^{2} \tag{2.3}
\end{equation*}
$$

for

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu, \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right], \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) .
\end{aligned}
$$

Proof: We will use again the induction hypothesis in k. Note that $\phi_{0}^{\prime \prime}(\boldsymbol{x})=\gamma_{0} \boldsymbol{I}$. Now, for any $k \geq 0$,

$$
\phi_{k+1}^{\prime \prime}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}^{\prime \prime}(\boldsymbol{x})+\alpha_{k} \mu \boldsymbol{I}=\left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{I}=\gamma_{k+1} \boldsymbol{I} .
$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (2.3). From the first-order optimality condition

$$
\begin{aligned}
\phi_{k+1}^{\prime}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}^{\prime}(\boldsymbol{x})+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right) \\
& =\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right)+\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)=0 .
\end{aligned}
$$

Thus,

$$
\boldsymbol{x}=\boldsymbol{v}_{k+1}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right]
$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.
Finally, from what we proved so far and from the definition

$$
\begin{align*}
\phi_{k+1}\left(\boldsymbol{y}_{k}\right) & =\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|^{2} \\
& =\left(1-\alpha_{k}\right) \phi_{k}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) \tag{2.4}\\
& =\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) .
\end{align*}
$$

Now,

$$
\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right] .
$$

Therefore,

$$
\begin{align*}
\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right\|^{2}= & \frac{1}{2 \gamma_{k+1}}\left[\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|^{2}+\alpha_{k}^{2}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|^{2}\right. \tag{2.5}\\
& \left.-2 \alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right] .
\end{align*}
$$

Substituting (2.5) into (2.4), we obtain the expression for ϕ_{k+1}^{*}.
Theorem 2.6.5 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in$ $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). For a given $\boldsymbol{x}_{0}, \boldsymbol{v}_{0} \in \mathbb{R}^{n}$ and $L \geq \gamma_{0} \geq \mu \geq 0$, let us choose $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right)$. Define the sequences $\left\{\alpha_{k}\right\}_{k=0}^{\infty},\left\{\gamma_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{v}_{k}\right\}_{k=0}^{\infty},\left\{\phi_{k}^{*}\right\}_{k=0}^{\infty}$, and $\left\{\phi_{k}\right\}_{k=0}^{\infty}$ as follows:

$$
\begin{aligned}
\alpha_{k} \in(0,1) \quad \begin{aligned}
\text { root of } & L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \equiv \gamma_{k+1}, \\
\boldsymbol{y}_{k}= & \frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu}, \\
\boldsymbol{x}_{k} \text { is such that } & f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|^{2}, \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} f^{\prime}\left(\boldsymbol{y}_{k}\right)\right], \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|^{2}+\left\langle f^{\prime}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right), \\
\phi_{k+1}(\boldsymbol{x})= & \phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|^{2} .
\end{aligned}, l
\end{aligned}
$$

Then, we satisfy all the conditions of Lemma 2.6.2.
Proof: In fact, it just remains to show that $f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}$ and $\sum_{k=1}^{\infty} \alpha_{k}=\infty$.
For $k=0, f\left(\boldsymbol{x}_{0}\right) \leq \phi_{0}^{*}$. Suppose that induction hypothesis is valid for k, and due to the previous lemma,

$$
\phi_{k+1}^{*}=\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|f^{\prime}\left(\boldsymbol{y}_{k}\right)\right\|^{2}
$$

