Proof: See [YUAN2010].

- Note that the previous result for the gradient method Theorem 1.5.5 was only a local result.
- Comparing the rate of convergence of the gradient method for the classes $\mathcal{F}_{L}^{1,1}(\mathbb{R}^{n})$ and $\mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^{n})$, Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$ with $\lambda_k \geq 0$ is called an *estimate sequence* of the function $f(\boldsymbol{x})$ if

$$\lambda_k \to 0,$$

and for any $\boldsymbol{x} \in \mathbb{R}^n$ and any $k \ge 0$, we have

$$\phi_k(\boldsymbol{x}) \leq (1 - \lambda_k) f(\boldsymbol{x}) + \lambda_k \phi_0(\boldsymbol{x}).$$

Lemma 2.6.2 Given an estimate sequence $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}, \{\lambda_k\}_{k=0}^{\infty}$, and if for some sequence $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ we have

$$f(\boldsymbol{x}_k) \leq \phi_k^* \equiv \min_{\boldsymbol{x} \in \mathbb{R}^n} \phi_k(\boldsymbol{x})$$

then $f(\boldsymbol{x}_k) - f^* \leq \lambda_k (\phi_0(\boldsymbol{x}^*) - f(\boldsymbol{x}^*)) \to 0.$

Proof: It follows from the definition.

Lemma 2.6.3 Assume that

1. $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}^1(\mathbb{R}^n)$).

- 2. $\phi_0(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^n .
- 3. $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^n .

4. $\{\alpha_k\}_{k=0}^{\infty}$ is an arbitrary sequence such that $\alpha_k \in (0,1)$, $\sum_{k=0}^{\infty} \alpha_k = \infty$, and $\alpha_{-1} = 0$.

Then the pair of sequences $\{\prod_{i=-1}^{k-1}(1-\alpha_i)\}_{k=0}^{\infty}$ and $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ recursively defined as

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right]$$

is an estimate sequence.

Proof: Let us prove by induction on k. For k = 0, $\phi_0(\boldsymbol{x}) = (1 - (1 - \alpha_{-1})) f(\boldsymbol{x}) + (1 - \alpha_{-1})\phi_0(\boldsymbol{x})$ since $\alpha_{-1} = 1$. Suppose that the induction hypothesis is valid for k. Since $f \in S^1_{\mu}(\mathbb{R}^n)$,

$$\begin{aligned} \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|^2 \right] \\ &\leq (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k f(\boldsymbol{x}) \\ &= (1-(1-\alpha_k)\Pi_{i=-1}^{k-1}(1-\alpha_i)) f(\boldsymbol{x}) + (1-\alpha_k) \left(\phi_k(\boldsymbol{x}) - (1-\Pi_{i=-1}^{k-1}(1-\alpha_i)) f(\boldsymbol{x}) \right) \\ &\leq (1-(1-\alpha_k)\Pi_{i=-1}^{k-1}(1-\alpha_i)) f(\boldsymbol{x}) + (1-\alpha_k)\Pi_{i=-1}^{k-1}(1-\alpha_i)\phi_0(\boldsymbol{x}) \\ &= (1-\Pi_{i=-1}^k(1-\alpha_i)) f(\boldsymbol{x}) + \Pi_{i=-1}^k(1-\alpha_i)\phi_0(\boldsymbol{x}). \end{aligned}$$

The remaining part is left for exercise.

Lemma 2.6.4 Let $\gamma_0, \phi_0^* \in \mathbb{R}$, $\mu \in \mathbb{R}$ (possible with $\mu = 0$), $\boldsymbol{v}_0 \in \mathbb{R}^n$, and $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ a given arbitrarily sequence. Define $\phi_0(\boldsymbol{x}) = \phi_0^* + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{v}_0\|^2$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right],$$

for an arbitrary sequence $\{\alpha_k\}_{k=0}^{\infty}$ such that $\alpha_k \in (0,1)$ and $\sum_{k=0}^{\infty} \alpha_k = \infty$. Then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$\phi_{k+1}(\boldsymbol{x}) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|^2$$
(2.3)

for

$$\begin{split} \gamma_{k+1} &= (1-\alpha_k)\gamma_k + \alpha_k\mu, \\ \boldsymbol{v}_{k+1} &= \frac{1}{\gamma_{k+1}}[(1-\alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_kf'(\boldsymbol{y}_k)], \\ \phi_{k+1}^* &= (1-\alpha_k)\phi_k^* + \alpha_kf(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}}\|f'(\boldsymbol{y}_k)\|^2 \\ &\quad + \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 + \langle f'(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle\right). \end{split}$$

Proof: We will use again the induction hypothesis in k. Note that $\phi_0''(\boldsymbol{x}) = \gamma_0 \boldsymbol{I}$. Now, for any $k \ge 0$,

$$\phi_{k+1}''(\boldsymbol{x}) = (1 - \alpha_k)\phi_k''(\boldsymbol{x}) + \alpha_k\mu\boldsymbol{I} = ((1 - \alpha_k)\gamma_k + \alpha_k\mu)\boldsymbol{I} = \gamma_{k+1}\boldsymbol{I}.$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (2.3). From the first-order optimality condition

$$\begin{aligned} \phi'_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\phi'_k(\boldsymbol{x}) + \alpha_k f'(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x}-\boldsymbol{y}_k) \\ &= (1-\alpha_k)\gamma_k(\boldsymbol{x}-\boldsymbol{v}_k) + \alpha_k f'(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x}-\boldsymbol{y}_k) = 0. \end{aligned}$$

2.6. THE OPTIMAL GRADIENT METHOD

Thus,

$$oldsymbol{x} = oldsymbol{v}_{k+1} = rac{1}{\gamma_{k+1}} \left[(1 - lpha_k) \gamma_k oldsymbol{v}_k + lpha_k \mu oldsymbol{y}_k - lpha_k f'(oldsymbol{y}_k)
ight]$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.

Finally, from what we proved so far and from the definition

$$\phi_{k+1}(\boldsymbol{y}_k) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_{k+1}\|^2
= (1 - \alpha_k)\phi_k(\boldsymbol{y}_k) + \alpha_k f(\boldsymbol{y}_k)
= (1 - \alpha_k) \left(\phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2\right) + \alpha_k f(\boldsymbol{y}_k).$$
(2.4)

Now,

$$oldsymbol{v}_{k+1} - oldsymbol{y}_k = rac{1}{\gamma_{k+1}} \left[(1-lpha_k) \gamma_k (oldsymbol{v}_k - oldsymbol{y}_k) - lpha_k f'(oldsymbol{y}_k)
ight].$$

Therefore,

$$\frac{\gamma_{k+1}}{2} \|\boldsymbol{v}_{k+1} - \boldsymbol{y}_{k}\|^{2} = \frac{1}{2\gamma_{k+1}} \left[(1 - \alpha_{k})^{2} \gamma_{k}^{2} \|\boldsymbol{v}_{k} - \boldsymbol{y}_{k}\|^{2} + \alpha_{k}^{2} \|f'(\boldsymbol{y}_{k})\|^{2} - 2\alpha_{k} (1 - \alpha_{k}) \gamma_{k} \langle f'(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right].$$
(2.5)

Substituting (2.5) into (2.4), we obtain the expression for ϕ_{k+1}^* .

Theorem 2.6.5 Consider $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$). For a given $\boldsymbol{x}_0, \boldsymbol{v}_0 \in \mathbb{R}^n$ and $L \geq \gamma_0 \geq \mu \geq 0$, let us choose $\phi_0^* = f(\boldsymbol{x}_0)$. Define the sequences $\{\alpha_k\}_{k=0}^{\infty}, \{\gamma_k\}_{k=0}^{\infty}, \{\boldsymbol{y}_k\}_{k=0}^{\infty}, \{\boldsymbol{x}_k\}_{k=0}^{\infty}, \{\boldsymbol{v}_k\}_{k=0}^{\infty}, \{\boldsymbol{\phi}_k^*\}_{k=0}^{\infty}, \text{ and } \{\phi_k\}_{k=0}^{\infty}$ as follows:

$$\alpha_k \in (0,1) \quad \text{root of} \quad L\alpha_k^2 = (1-\alpha_k)\gamma_k + \alpha_k\mu \equiv \gamma_{k+1},$$
$$\boldsymbol{y}_k = \quad \frac{\alpha_k\gamma_k\boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k}{\gamma_k + \alpha_k\mu},$$

$$\begin{aligned} \boldsymbol{x}_{k} & \text{ is such that } \quad f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{y}_{k}) - \frac{1}{2L} \|f(\boldsymbol{y}_{k})\| ,\\ \boldsymbol{v}_{k+1} = & \frac{1}{\gamma_{k+1}} [(1 - \alpha_{k})\gamma_{k}\boldsymbol{v}_{k} + \alpha_{k}\mu\boldsymbol{y}_{k} - \alpha_{k}f'(\boldsymbol{y}_{k})],\\ \phi_{k+1}^{*} = & (1 - \alpha_{k})\phi_{k}^{*} + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}} \|f'(\boldsymbol{y}_{k})\|^{2} \\ & + \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \left(\frac{\mu}{2}\|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|^{2} + \langle f'(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right),\\ \phi_{k+1}(\boldsymbol{x}) = & \phi_{k+1}^{*} + \frac{\gamma_{k+1}}{2}\|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|^{2}. \end{aligned}$$

Then, we satisfy all the conditions of Lemma 2.6.2.

Proof: In fact, it just remains to show that $f(\boldsymbol{x}_k) \leq \phi_k^*$ and $\sum_{k=1}^{\infty} \alpha_k = \infty$. For k = 0, $f(\boldsymbol{x}_0) \leq \phi_0^*$. Suppose that induction hypothesis is valid for k, and due to the previous lemma,

$$\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|f'(\boldsymbol{y}_k)\|^2$$