Proof:

 $1 \Rightarrow 2$ It follows from the definition of convex function and Lemma 1.4.4.

 $2\Rightarrow 3$ Fix $\boldsymbol{x} \in \mathbb{R}^n$, and consider the function $\phi(\boldsymbol{y}) = f(\boldsymbol{y}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} \rangle$. Clearly $\phi(\boldsymbol{x})$ satisfies 2. Also, $\boldsymbol{y}^* = \boldsymbol{x}$ is a minimal solution. Therefore from 2,

$$\phi(\boldsymbol{x}) = \phi(\boldsymbol{y}^*) \le \phi\left(\boldsymbol{y} - \frac{1}{L}\phi'(\boldsymbol{y})\right) \le \phi(\boldsymbol{y}) + \frac{L}{2} \left\|\frac{1}{L}\phi'(\boldsymbol{y})\right\|^2 + \langle\phi'(\boldsymbol{y}), -\frac{1}{L}\phi'(\boldsymbol{y})\rangle$$
$$= \phi(\boldsymbol{y}) + \frac{1}{2L} \|\phi'(\boldsymbol{y})\|^2 - \frac{1}{L} \|\phi'(\boldsymbol{y})\|^2 = \phi(\boldsymbol{y}) - \frac{1}{2L} \|\phi'(\boldsymbol{y})\|^2.$$

Since $\phi'(\mathbf{y}) = f'(\mathbf{y}) - f'(\mathbf{x})$, finally we have

$$f(\boldsymbol{x}) - \langle f'(\boldsymbol{x}), \boldsymbol{x} \rangle \le f(\boldsymbol{y}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} \rangle - \frac{1}{2L} \|f'(\boldsymbol{y}) - f'(\boldsymbol{x})\|^2.$$

 $3\Rightarrow 4$ Adding two copies of 3 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 4.

4 \Rightarrow 1 Applying the Cauchy-Schwarz inequality to 4, we obtain $||f'(x) - f'(y)|| \le L||x - y||$. Also from Theorem 2.1.5, f(x) is convex.

 $2\Rightarrow 5$ Adding two copies of 2 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 5.

 $5\Rightarrow 2$

$$f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle = \int_0^1 \langle f'(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle d\tau$$

$$\leq \int_0^1 \tau L \|\boldsymbol{y} - \boldsymbol{x}\|^2 d\tau = \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2.$$

The non-negativity follows from Theorem 2.1.5.

 $3 \Rightarrow 6$ Denote $\boldsymbol{x}_{\alpha} = \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y}$. From 3,

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_{\alpha}) + \langle f'(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{1}{2L} \|f'(\boldsymbol{x}) - f'(\boldsymbol{x}_{\alpha})\|^{2}$$

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}_{\alpha}) + \langle f'(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{1}{2L} \|f'(\boldsymbol{y}) - f'(\boldsymbol{x}_{\alpha})\|^{2}.$$

Multiplying the first inequality by α , the second by $1-\alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}) \ge f(\boldsymbol{x}_{\alpha}) + \frac{\alpha}{2L} \|f'(\boldsymbol{x}) - f'(\boldsymbol{x}_{\alpha})\|^2 + \frac{1 - \alpha}{2L} \|f'(\boldsymbol{y}) - f'(\boldsymbol{x}_{\alpha})\|^2.$$

Finally, using the inequality

$$\alpha \| \boldsymbol{b} - \boldsymbol{d} \|^2 + (1 - \alpha) \| \boldsymbol{c} - \boldsymbol{d} \|^2 \ge \alpha (1 - \alpha) \| \boldsymbol{b} - \boldsymbol{c} \|^2$$

we have the result.

$$\begin{pmatrix} -\alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|^2 \ge -\alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\| + \|\boldsymbol{c}-\boldsymbol{d}\|)^2 \\ \text{Therefore} \\ \alpha\|\boldsymbol{b}-\boldsymbol{d}\|^2 + (1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|^2 - \alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\| + \|\boldsymbol{c}-\boldsymbol{d}\|)^2 \\ = (\alpha\|\boldsymbol{b}-\boldsymbol{d}\| - (1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|)^2 \ge 0 \end{pmatrix}$$

6 \Rightarrow 3 Dividing both sides by $1 - \alpha$ and tending α to 1, we obtain 3. $2\Rightarrow$ 7 From 2,

$$f(\boldsymbol{x}) \leq f(\boldsymbol{x}_{\alpha}) + \langle f'(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{L}{2}(1-\alpha)^{2} \|\boldsymbol{x}-\boldsymbol{y}\|^{2}$$

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}_{\alpha}) + \langle f'(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{L}{2}\alpha^{2} \|\boldsymbol{x}-\boldsymbol{y}\|^{2}$$

Multiplying the first inequality by α , the second by $1-\alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1 - \alpha) f(\boldsymbol{y}) \le f(\boldsymbol{x}_{\alpha}) + \frac{L}{2} \left(\alpha (1 - \alpha)^2 + (1 - \alpha) \alpha^2 \right) \|\boldsymbol{x} - \boldsymbol{y}\|^2.$$

The non-negativity follows from Theorem 2.1.5.

 $\boxed{7\Rightarrow2}$ Dividing both sides by $1-\alpha$ and tending α to 1, we obtain 2. The non-negativity follows from Theorem 2.1.5.

2.2 Lower complexity bound for $\mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ for gradient based methods

Gradient Method: Iterative method \mathcal{M} generated by a sequence such that

$$x_k \in x_0 + \text{Lin}\{f'(x_0), f'(x_1), \dots, f'(x_{k-1})\}, \quad k \ge 1.$$

Consider the problem class as follows

Model:	$\min_{oldsymbol{x} \in \mathbb{R}^n} f(oldsymbol{x}) ext{where } f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$
Oracle:	First-order local black box
Approximate solution:	Find $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) - f^* < \varepsilon$

Theorem 2.2.1 For any $1 \leq k \leq \frac{n-1}{2}$, and any $x_0 \in \mathbb{R}^n$, there exists a function $f \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ such that for any first-order method of type \mathcal{M} , we have

$$f(\boldsymbol{x}_k) - f^* \geq \frac{3L\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2}{32(k+1)^2},$$

 $\|\boldsymbol{x}_k - \boldsymbol{x}^*\|^2 \geq \frac{1}{8}\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2,$

where \mathbf{x}^* is the minimum of $f(\mathbf{x})$ and $f^* = f(\mathbf{x}^*)$.

Proof: This type of methods are invariant with respect to a simultaneous shift of all objects in the space of variables. Therefore, we can assume that $x_0 = 0$.

Consider the family of quadratic functions

$$f_k(m{x}) = rac{L}{4} \left\{ rac{1}{2} \left[[m{x}]_1^2 + \sum_{i=1}^{k-1} ([m{x}]_i - [m{x}]_{i+1})^2 + [m{x}]_k^2 \right] - [m{x}]_1
ight\}, \quad k = 1, 2, \dots, \lfloor rac{n-1}{2}
floor.$$

2.2. LOWER COMPLEXITY BOUND FOR $\mathcal{F}_L^{\infty,1}(\mathbb{R}^N)$ FOR GRADIENT BASED METHODS29

We can see that

for
$$k = 1$$
, $f_1(\mathbf{x}) = \frac{L}{4}([\mathbf{x}]_1^2 - [\mathbf{x}]_1)$,
for $k = 2$, $f_2(\mathbf{x}) = \frac{L}{4}([\mathbf{x}]_1^2 + [\mathbf{x}]_2^2 - [\mathbf{x}]_1[\mathbf{x}]_2 - [\mathbf{x}]_1)$,
for $k = 3$, $f_3(\mathbf{x}) = \frac{L}{4}([\mathbf{x}]_1^2 + [\mathbf{x}]_2^2 + [\mathbf{x}]_3^2 - [\mathbf{x}]_1[\mathbf{x}]_2 - [\mathbf{x}]_2[\mathbf{x}]_3 - [\mathbf{x}]_1)$.
Also, $f'_k(\mathbf{x}) = \frac{L}{4}(\mathbf{A}_k\mathbf{x} - \mathbf{e}_1)$, where $\mathbf{e}_1 = (1, 0, \dots, 0)^T$, and

$$\boldsymbol{A}_{k} = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 & \mathbf{0}_{k,n-k} \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \\ & & \mathbf{0}_{n-k,k} & & \mathbf{0}_{n-k,n-k} \end{pmatrix}.$$

After some calculations, we can show that $L\mathbf{I} \succeq f_k''(\mathbf{x}) \succeq \mathbf{O}, \quad k = 1, 2, \dots, \lfloor \frac{n-1}{2} \rfloor$, and therefore, $f_k(\mathbf{x}) \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n), \quad k = 1, 2, \dots, \lfloor \frac{n-1}{2} \rfloor$.

Also

$$f_k^* \equiv f_k(\bar{x_k}) = \frac{L}{8} \left(-1 + \frac{1}{k+1} \right),$$
$$[\bar{x_k}]_i = \begin{cases} 1 - \frac{i}{k+1}, & i = 1, 2, \dots, k \\ 0, & i = k+1, k+2, \dots, n. \end{cases}$$

Let us take $f(\boldsymbol{x}) = f_{2k+1}(\boldsymbol{x})$, and $\boldsymbol{x}^* = \boldsymbol{x}_{2k+1}^-$. Then

$$f(\boldsymbol{x}_{k}) - f^{*} = f_{2k+1}(\boldsymbol{x}_{k}) - f_{2k+1}(\boldsymbol{x}_{2k+1}) = f_{k}(\boldsymbol{x}_{k}) - \frac{L}{8} \left(-1 + \frac{1}{2k+2} \right)$$

$$\geq f_{k}(\bar{\boldsymbol{x}}_{k}) - \frac{L}{8} \left(-1 + \frac{1}{2k+2} \right) = \frac{L}{8} \left(-1 + \frac{1}{k+1} \right) - \frac{L}{8} \left(-1 + \frac{1}{2k+2} \right).$$

Note that $\boldsymbol{x}_k \in \{\boldsymbol{x}_0 + \operatorname{Lin}\{f'(\boldsymbol{x}_0), f'(\boldsymbol{x}_1), \dots, f'(\boldsymbol{x}_{k-1})\}\}\$ for $\boldsymbol{x}_0 = \boldsymbol{0}$, and $f_p(\boldsymbol{x}_k) = f_k(\boldsymbol{x}_k)$ for $p \geq k$.

Also
$$\|\boldsymbol{x}_k - \boldsymbol{x}^*\|^2 = \|\boldsymbol{x}_k - \boldsymbol{x}_{2k+1}^-\|^2 \ge \sum_{i=k+1}^{2k+1} ([\boldsymbol{x}_{2k+1}^-]_i)^2.$$

After some calculations [NESTEROV2004], we have the results.

If we consider very large problems where we can not afford n number of iterations, the above theorem says that:

- The optimal value can be expected to decrease fast.
- The convergence to the optimal solution can be arbitrarily slow.

2.3 Strongly convex functions

Definition 2.3.1 A continuously differentiable function $f(\boldsymbol{x})$ is called *strongly convex* on \mathbb{R}^n (notation $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$) if there exists a constant $\mu > 0$ such that

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \langle f'(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{1}{2}\mu \|\boldsymbol{y} - \boldsymbol{x}\|^2, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

The constant μ is called the *convexity parameter* of the function f.

Example 2.3.2 The following functions are strongly convex functions:

- 1. $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$.
- 2. $f(\boldsymbol{x}) = \alpha + \langle \boldsymbol{a}, \boldsymbol{x} \rangle + \frac{1}{2} \langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \rangle$, for $\boldsymbol{A} \succeq \mu \boldsymbol{I}$.
- 3. A sum of a convex and a strongly convex functions.

Corollary 2.3.3 If $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$ and $f'(\boldsymbol{x}^*) = 0$, then

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}^*) + \frac{1}{2}\mu \|\boldsymbol{x} - \boldsymbol{x}^*\|^2, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof: Left for exercise.

Theorem 2.3.4 Let f be a continuously differentiable function. The following conditions are equivalent:

- 1. $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$.
- 2. $\mu \| \boldsymbol{x} \boldsymbol{y} \|^2 \le \langle f'(\boldsymbol{x}) f'(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$
- 3. $f(\alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y}) + \alpha(1-\alpha)\frac{\mu}{2}\|\boldsymbol{x} \boldsymbol{y}\|^2 \le \alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}), \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n, \ \forall \alpha \in [0,1].$ Proof: Left for exercise.

Theorem 2.3.5 If $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$, we have

- 1. $f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \langle f'(\boldsymbol{x}), \boldsymbol{y} \boldsymbol{x} \rangle + \frac{1}{2\mu} \|f'(\boldsymbol{x}) f'(\boldsymbol{y})\|^2, \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n,$
- 2. $\langle f'(\boldsymbol{x}) f'(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \leq \frac{1}{\mu} \|f'(\boldsymbol{x}) f'(\boldsymbol{y})\|^2, \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$

Proof: Let us fix $\boldsymbol{x} \in \mathbb{R}^n$, and define the function $\phi(\boldsymbol{y}) = f(\boldsymbol{y}) - \langle f'(\boldsymbol{x}), \boldsymbol{y} \rangle$. Clearly, $\phi \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$. Also, one minimal solution is \boldsymbol{x} . Therefore,

$$\phi(\boldsymbol{x}) = \min_{\boldsymbol{v} \in \mathbb{R}^n} \phi(\boldsymbol{v}) \ge \min_{\boldsymbol{v} \in \mathbb{R}^n} \left[\phi(\boldsymbol{y}) + \langle \phi'(\boldsymbol{y}), \boldsymbol{v} - \boldsymbol{y} \rangle + \frac{\mu}{2} \|\boldsymbol{v} - \boldsymbol{y}\|^2 \right]$$
$$= \phi(\boldsymbol{y}) - \frac{1}{2\mu} \|\phi'(\boldsymbol{y})\|^2$$

as wished. Adding two copies of the 1 with \boldsymbol{x} and \boldsymbol{y} interchanged, we get 2.

The converse of Theorem 2.3.5 is not valid. For instance, consider $f(x_1, x_2) = x_1^2 - x_2^2$, $\mu = 1$. Then the inequalities 1. and 2. are satisfied but $f \notin \mathcal{S}^1_{\mu}(\mathbb{R}^2)$ for any $\mu > 0$.