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Lemma 1.7.3 For any k, ℓ ≥ 0, k ̸= ℓ, we have ⟨f ′(xk), f
′(xℓ)⟩ = 0.

Proof: Let k ≥ i, and consider

ϕ(λ) = f

(
x0 +

k∑
j=1

λjf
′(xj−1)

)
.

From the previous lemma, there is a λ∗ such that xk = x0 +
∑k

j=1 λ
∗
jf

′(xj−1). Moreover,
λ∗ is the minimum of the function ϕ(λ). Therefore,

∂ϕ

∂λi

(λ∗) = ⟨f ′(xk), f
′(xi−1)⟩ = 0.

Corollary 1.7.4 The sequence generated by the conjugate gradient method for the convex
quadratic function is finite.

Proof: Since the number of orthogonal directions in Rn cannot exceed n.

Let us define δi = xi+1 − xi. It is clear that Lk = Lin{δ0, δ1, . . . , δk−1}.

Lemma 1.7.5 For any k, ℓ ≥ 0, k ̸= ℓ, ⟨Aδk, δℓ⟩ = 0.

Proof: Let k > ℓ. Then

⟨Aδk, δℓ⟩ = ⟨A(xk+1 − xk), δℓ⟩ = ⟨f ′(xk+1)− f ′(xk),xℓ+1 − xℓ⟩ = 0,

due to Lemma 1.7.3.

The vectors {δi} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the

next iterations as follows:

xk+1 = xk − hkf
′(xk) +

k−1∑
j=0

λjδj

Using the previous properties, we arrive that

λj = 0, (j = 0, 1, . . . , k − 2), λk−1 =
hk∥f ′(xk)∥2

⟨f ′(xk)− f ′(xk−1), δk−1⟩
. (1.6)

Thus

xk+1 = xk − hkpk

where

pk = f ′(xk)−
∥f ′(xk)∥2pk−1

⟨f ′(xk)− f ′(xk−1),pk−1⟩
.
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Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method
Step 0: Let x0 ∈ Rn, compute f(x0), f

′(x0) and set p0 := f ′(x0), k := 0
Step 1: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk

Step 2: Compute f(xk+1) and f ′(xk+1)
Step 3: Compute the coefficient βk+1

Step 4: Set pk+1 := f ′(xk+1)− βk+1pk, k := k + 1 and go to Step 1

The most popular choices for the coefficient βk are:

1. Hestenes-Stiefel (1952): βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
⟨f ′(xk+1)−f ′(xk),pk⟩

.

2. Fletcher-Reeves (1964): βk+1 =
∥f ′(xk+1)∥2
∥f ′(xk)∥2

.

3. Polak-Ribière: βk+1 =
⟨f ′(xk+1),f

′(xk+1)−f ′(xk)⟩
∥f ′(xk)∥2

.

4. Polak-Ribière plus: βk+1 = max
{
0, ⟨f

′(xk+1),f
′(xk+1)−f ′(xk)⟩

∥f ′(xk)∥2

}
.

5. Dai-Yuan (1999): βk+1 =
∥f ′(xk+1)∥2

⟨f ′(xk+1)−f ′(xk),pk⟩
.

1.8 Quasi-Newton methods

The basic idea of the quasi-Newton methods is to approximate the Hessian matrix (or its
inverse) which we need to compute in the Newton method. There are of course infinitely
many ways to do so, but we choose the ones which satisfy the secant equation:

Hk+1yk = sk

where yk = f ′(xk+1)− f ′(xk), sk = xk+1 − xk.
The general scheme of the quasi-Newton method is as follows.

Quasi-Newton Method
Step 0: Let x0 ∈ Rn, H0 := I, k := 0. Compute f(x0), f

′(x0)
Step 1: Set pk := Hkf

′(xk)
Step 2: Find xk+1 := xk − hkpk by “approximate line search” on the scalar hk

Step 3: Compute f(xk+1) and f ′(xk+1)
Step 4: Compute Hk+1 from Hk, k := k + 1 and go to Step 1

The most popular updates for Hk+1 are:

1. BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Hk+1 :=

(
I − sk(yk)

T

(sk)Tyk

)
Hk

(
I − yk(sk)

T

(sk)Tyk

)
+

sk(sk)
T

(sk)Tyk
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2. DFP (Davidon-Fletcher-Powell)

Hk+1 := Hk +
sk(sk)

T

(yk)
Tsk

− Hkyk(yk)
THk

(yk)
THkyk

3. Symmetric-Rank-One

Hk+1 := Hk +
(sk −Hkyk)(sk −Hkyk)

T

(sk −Hkyk)
Tyk

In the same way for the conjugate gradient method, we can show that the quasi-Newton
method converges in finite number of iterations for a strictly convex quadratic function.
Moreover, under some strict convexity conditions at the neighborhood of the local minimum,
it is possible to show that its iterates converge super-linearly [NOCEDAL2006].

1.9 Exercises

1. In view of Theorem 1.3.4, find a twice continuously differentiable function on Rn which
satisfies f ′(x∗) = 0, f ′′(x∗) ⪰ O, but x∗ is not a local minimum of f(x).

2. Prove Lemma 1.4.5.

3. Give a geometric interpretation of the following step-size strategies:

Let 0 < c1 < c2 < 1,

• Wolfe condition

f(xk − hf ′(xk)) ≤ f(xk)− c1h∥f ′(xk)∥2,
⟨f ′(xk − hf ′(xk)), f

′(xk)⟩ ≤ c2∥f ′(xk)∥2.

• Strong Wolfe condition

f(xk − hf ′(xk)) ≤ f(xk)− c1h∥f ′(xk)∥2,
|⟨f ′(xk − hf ′(xk)), f

′(xk)⟩| ≤ c2∥f ′(xk)∥2.

4. Consider a sequence {βk}∞k=0 which converges to zero.

The sequence is said to converge Q-linearly if there exists a scalar ρ ∈ (0, 1) such that

βk+1

βk

≤ ρ,

for all k sufficiently large. Q-superlinear convergence occurs when we have

lim
k→∞

βk+1

βk

= 0,

while the convergence is Q-quadratic if there is a constant C such that

βk+1

β2
k

≤ C
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for all k sufficiently large. Q-superquadratic convergence is indicated by

lim
k→∞

βk+1

β2
k

= 0.

(a) Show that the following implications are valid: Q-superquadratic ⇒ Q-quadratic
⇒ Q-superlinear ⇒ Q-linear.

(b) Give examples of sequences which do not imply the opposite directions in the three
cases above.

A zero converging sequence {βk}∞k=0 is said to converge R-linearly if it is dominated by
a Q-linearly converging sequence. That is, if there is a Q-linearly converging sequence
{β̂k}∞k=0 such that 0 ≤ βk ≤ β̂k.

(c) Give a sequence which is R-linearly converging but not Q-linearly converging.

5. Let f(x) = 1
2
xTQx such that Q is symmetric, and indefinite. Apply the gradient

method with constant step. Show that if the starting point x0 belongs to the space
spanned by the negative eigenvectors, the sequence generated by the gradient method
diverges.

6. In light of Theorem 1.6.3, show that under Assumption 1.6.2, if we want to obtain
∥xk − x∗∥ < ε, we need an order of ln(ln ε−1) iterations for the Newton method.

7. In the Section 1.7, show that Lk = {δ0, δ1, . . . , δk−1}.

8. In the same section, arrive at the expression (1.6) for a strictly convex quadratic
function.

9. Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one for-
mulae.

10. Given u,v ∈ Rn and a non-singular matrix M ∈ Rn×n, if 1 + vTM−1u ̸= 0, then the

(M + uvT )−1 = M−1 − M−1uvTM−1

1 + vTM−1u
. (Sherman-Morrison formula)

Apply this formula to compute the inverses Bk+1 of Hk+1 for BFGS, DFP and
symmetric-rank-one formulae.

11. Apply the quasi-Newton method with BFGS, DFP, and Symmetric-Rank-One updates
for the strictly convex function f(x) = α + ⟨a,x⟩+ 1

2
⟨Ax,x⟩ with A ≻ O.



Chapter 2

Smooth Convex Optimization

2.1 Smooth convex functions

Definition 2.1.1 A continuously differentiable function f(x) is called convex on Rn (no-
tation F1(Rn)) if

f(y) ≥ f(x) + ⟨f ′(x),y − x⟩, ∀x,y ∈ Rn.

if −f(x) is convex, f(x) is called concave.

Theorem 2.1.2 If f ∈ F1(Rn) and f ′(x∗) = 0, then x∗ is the global minimum of f(x) on
Rn.

Proof: Left for exercise.

Lemma 2.1.3 If f ∈ F1(Rm), b ∈ Rm, and A : Rn → Rm, then

ϕ(x) = f(Ax+ b) ∈ F1(Rn).

Proof: Left for exercise.

Example 2.1.4 The following functions are differentiable and convex:

1. f(x) = ex

2. f(x) = |x|p, p > 1

3. f(x) = x2

1+|x|

4. f(x) = |x| − ln(1 + |x|)

5. f(x) =
∑m

i=1 e
αi+⟨ai,x⟩

6. f(x) =
∑m

i=1 |⟨ai,x⟩ − bi|p, p > 1

Theorem 2.1.5 Let f be a continuously differentiable function. The following conditions
are equivalent:

1. f ∈ F1(Rn).

25
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2. f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1].

3. ⟨f ′(x)− f ′(y),x− y⟩ ≥ 0, ∀x,y ∈ Rn.

Proof: Left for exercise.

Theorem 2.1.6 Let f be a twice continuously differentiable function. Then f ∈ F2(Rn) if
and only if

f ′′(x) ⪰ O, ∀x ∈ Rn.

Proof: Let f ∈ F2(Rn), and denote xτ = x + τs, τ > 0. Then, from the previous
result

0 ≤ 1

τ 2
⟨f ′(xτ )− f ′(x),xτ − x⟩ = 1

τ
⟨f ′(xτ )− f ′(x), s⟩

=
1

τ

∫ τ

0

⟨f ′′(x+ λs)s, s⟩dλ

=
F (τ)− F (0)

τ

where F (τ) =
∫ τ

0
⟨f ′′(x + λs)s, s⟩dλ. Therefore, tending τ to 0, we get 0 ≤ F ′(0) =

⟨f ′′(x)s, s⟩, and we have the result.
Conversely, ∀x ∈ Rn,

f(y) = f(x) + ⟨f ′(x),y − x⟩+
∫ 1

0

∫ τ

0

⟨f ′′(x+ λ(y − x))(y − x),y − x⟩dλdτ

≥ f(x) + ⟨f ′(x),y − x⟩.

Corollary 2.1.7 Let f be a two times continuously differentiable function. f ∈ F2,1
L (Rn)

if and only if O ⪯ f ′′(x) ⪯ LI, ∀x ∈ Rn.

Theorem 2.1.8 Let f be a continuously differentiable function in Rn, x,y ∈ Rn, and
α ∈ [0, 1]. Then the following conditions are equivalent:

1. f ∈ F1,1
L (Rn).

2. 0 ≤ f(y)− f(x)− ⟨f ′(x),y − x⟩ ≤ L
2
∥x− y∥2.

3. f(x) + ⟨f ′(x),y − x⟩+ 1
2L
∥f ′(x)− f ′(y)∥2 ≤ f(y).

4. 0 ≤ 1
L
∥f ′(x)− f ′(y)∥2 ≤ ⟨f ′(x)− f ′(y),x− y⟩.

5. 0 ≤ ⟨f ′(x)− f ′(y),x− y⟩ ≤ L∥x− y∥2.

6. f(αx+ (1− α)y) + α(1−α)
2L

∥f ′(x)− f ′(y)∥2 ≤ αf(x) + (1− α)f(y).

7. 0 ≤ αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≤ α(1− α)L
2
∥x− y∥2.


