Response Modification of Urban Infrastructure 都市施設の免震設計

第7章 基礎ロッキング免震 Chapter 7 Rocking Isolation of Foundations

東京工業大学 川島一彦 Kazuhiko Kawashima Tokyo Institute of Technology

Requirements of Foundations in Seismic Design 基礎の耐震設計の要件 Static Seismic Design

- Bearing capacity耐力
- Sliding 渇動
- Rocking 転倒
- Dynamic Response
- Sliding + Rocking
- Rocking + Jump

Requirements for Rocking Response in the Static Design静的な転倒照査

Akashi Strait Bridge The World Longest Bridge

Contraction of the

In the static design, overturning was the major factor for sizing those foundations

Is it true that such a large foundation overturns under a seismic excitation??

Mass
Natural period
Frequency content of a ground motion

Overturning of Foundation-Tower System of Akashi Straight Bridge 明石海峡大橋の耐震設計

 Static Analysis on Overturning of Foundation-Tower System was eliminated from seismic design

 This is because static overturning analysis is unrealistic

 Decision of design was made based on nonlinear dynamic response analysis and a preliminary static design based on critical velocity which results in overturning

Shake Table Verification on Overturning of 3 Blocks Public Works Research Institute

Kawashima & Unjoh (1991)

Analytical Idealization of 2 Anchorage of a Suspension Bridge

Compression

Yielo

Lateral Disp. Kawashima & Unjoh (1991)

Lateral Sliding at Base

Lateral Force

Analytical Idealization of a tower, cables, and a rigid footing

Kawashima et al (1994)

Seismic Rocking Isolation Rion Antirion Bridge, Greece

Courtesy of Dr. Alain Pecker

Concept of Rocking Isolation of Rion Anti-Rion Bridge

•Fault dislocation as large as 2 m is anticipated although the location of fault is not known.

Rocking isolation reduces bridge response.

Rion Antirion Bridge

Nonlinear Interaction between a Column Plastic Hinge and a Foundation

Contribution of Footing Displacement and Column Displacement to Deck Response 桁の応答変位には何が寄与するか?

$$u_D = u_F$$

+ $\theta_F (h_c + h_f)$
+ u_{Cf}
+ $\theta_{pc} (h_c - \frac{L_p}{2})$

*u*Cf : displacement due to column (elastic)
 flexural deformation

pc : rotation due to plastic deformation at the plastic hinge

Separations between the Foundation and the Underlying Ground 基礎の浮き上がり量の 時間履歴

Experimental Model

Shake Table

Footing

Column

Ground (Rubber Block)

Excitation of Model Foundation under a Ground Acceleration Recorded during the 2007 M6.8 Niigata Chuetsu Earthquake

Increase of Reaction Force of the Underlying Ground at Corners

Mergos, P.E. and Kawashima, K.: Rocking Isolation of a typical Bridge pier on Spread Foundation, Journal of Earthquake Engineering, 9(2), 395-414, 2005

Effect of Yield of Underlying Ground基 礎底面地盤が降伏すると、どうなるか?

