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Chapter 10 Formulation of the Nonlinear
Multi-Degree-of-Freedom Eqguations of
Motion ( )



10.1 Incremental Equations of Motion of Nonlinear
MDOF System (

®Equilibrium of the inertia force, damping force,
restoring force and external force for SDOF system is
given by Eqg. (2.1). By extending Eq. (2.1) to MDOF
system, one obtains

f1()+ fp(t)+ fs(t) = p()

(2.1)
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® Eq. (10.1) can be written in matrix form by

(F (O} FpO)+ Fr}={F()} @2

In which,

{F;} : inertia force vector ( )

{Fp }: damping force vector (

{FR} . restoring force vector (
{F } : external force vector ( )

where,

WFr =M Jit;
WFpj=[Clu;



® If the system is linear, the restoring force
vector Is given by

Ry =K Juj (7.3)

Then, Eq. (7.2) becomes completely the same
with Eq. (6.45).

®However, note in Eq. (7.2) that because the
system is not linear elastic, the restoring force
vector cannot be evaluated by Eq. (7.3). Therefore,
the equations of motion given by Eq. (10.2)

cannot be solved by the mode superposition
method whic we studied in Chapter 9.

F )+ FrO+{Fr@O}={F@)} @72
(M Yii}+[CRuj+[Ku}={P}  (6.45)




® In linear system IR Linear system

TR Upppr) = kg p |
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® However In
nonlinear system Jr(u;)

TR nr) # k(u)uy g p,

eHowever, if fp(f) is Ur Urine

the restoring forc_e Nonlinear system
at i, , the restoring fR‘. _

force at Ur1Ar may be Tangential

approximately stiffness K;

evaluated using the £, (y,, 4 )t Z

tangential stiffness ( u )l /o
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® In Eg. (a), Ir,

Tangential

Auy =uppp—ty  (b) stiffness k;
Is called incremental
displacement ( SR r) AR/

) at time t, and this Sru) |5
represents an increase %
of displacement
during a small time u, LI‘t+At

Interval At.
® Ath Is called incremental restoring force (

) at time t (during Au; ).
® Tangential stiffness is defined by
G0
= (c)

ou u=u,

A e = fr(upin) = Fr(y) = k() Ay (@)




® If time interval At is small enough such as 1/100s-
1/10,000s, the approximation of the incremental
restoring force by Eqg. (a) may be sufficient.

® Extending Eq. (a) to MDOF system, the
Incremental restoring force vector at time t is
written by

{AFRt}E {FR (uH—At)}_ {FR (“1)}

= [Kt (“t)]{A”t } (d)
where, {Aut} Is called the incremental
displacement vector ( ) during time
t+At and t, and is expressed by
Ay f =gy pr = | (e)

Nre = Frlun) — frwy) = k() Auy  (a) 5




® Based on Eqg. (7.2), the dynamic equilibrium at time
t+At can be written by

{Fr(t+ A} {Fp (t+ A+ {FR(t+ At) = {F (¢t + Ar)}
(7.4)

® Subtracting Eqg. (7.2) from Eqg. (7.4), one obtains the
dynamic equilibrium in an incremental form

RN A= 1AF] 2
\AFy b= F (t+ A = Fp (1)
= [M ]{ijt—l—At }_ [M ]{”t} (7.6)
_ _ = [M]{A”t}
in which {Aii, | = {ii, a, =i, | (7.7)

(F )+ {Fr@+{Fr0)}={F@®)} 7.2
(M Jii}+ [K uy=—ii [MJ1}  (6.16)  °




® Similarly,
AFp, j={Fp (t+ At)}—{Fp(0)§

= [CRAdu, | (7.8)
{AFp = AFR(t+ A1)} —{FR (1)}
< [K, Yo, ) —
(AF,}={F(t+ A} - {F(?)} (7.10)
In which
{Aut}z {ut—l—At}_ {”t} (7.11)
{A”t}z {ut—l—At}_ {”t} (7.12)

{Er(t+ A+ {Fp (t+ A+ {Fp(t+ At = {F (1 + At)}
(7.4)
{Er ()} +Fp ()} +{Fp (1)} = {F (1)} (7.2) ©




® Substitution of Egs. (7.6), (7.8), (7.9) and
(7.10) into Eqg. (7.5) leads to

[M Rt j+[Chaw, j+ K, RAu j=1AF ;- (7.12)

where,

{Aﬁt } = {ﬁt+At }_ {Mt} (7.7)

VATl =ty pp =y | (7.11)

WAy b=ty pp f— Uty § (7.12)
{AFy, +{AFp, [ +{AFR j={AF, | (7.5)

WAFy p=1F(t+ A= Fr () =M Jidi, ;- (7.6)
AFp, f={Fp(t+ At —{Fp ()} =[C)ag,} (7-8)
WAFp, = (FR(t+ A= Fr (D)= K, [idu,;  (7-9)
{AF j={F (t+ A1) —{F (1)} (7.1Q)




10.2 Direct Integration Method ( )

®Based on the Newmark’s § method for SDOF system
given by Eq. (5.27), the basic integration egquations
can be extended to MDOF system as

i, = ep{Auy, b= el §— caliiy | (7.132)
(A, j= co{Auy §— cq iy = es iy | =20)

Aii, = crdu, — c3ui; — cyii; (5.27a)
A?Jt = Czﬁut — CqU; — Csli (5.27b)
In which
1 = o) e 1
C1=——+ =— =
L N 2 oAt N
Cqp = — (g = ( = )At 12
20 20




® In Eq. (7.13), combination of 5—-1/2and o =1/4
IS the integration scheme corresponding to the

constant acceleration method ( ), and
combination of o0 =1/6 and 6 =1/2 the linear
acceleration method ( )

® Similar to Eqg. (5.29), substitution of Eq. (7.13)
Into Eq. (7.12) leads to

{Aﬁt f=¢ {A”t =) {”t = €3 {”t} (7.132)
{Aut}: €2 {A”t}_ C4 {at}_ CS{ﬁt} & =5)
[M RAii, §+ [CRAu, §+ K, [Au, j={AF ) (7.12)




K Jau }=1aF (7.14)

In which,

[ ]: A+ o[ M)+ e[ C] (7.15)

{Aﬁ}={AFf}+ [ca[M ]+ cq|C e §
+|cg|M |+ cs|ClRiE, ;- (7-16)

kydug =Ap;  (5.29)
iIn which,
l?t =k, +cym+cyc; (5.30)
AD; = Ap, +(cam + cqe, )iy

+ (c4m + C5C; )il't (5.31)

14



® Once the incremental displacements {A”t} are
computed by solving Eqg. (7.14), the incremental
accelerations {Aii, } and incremental velocities {Au, |
during At can be obtained from Eq. (7.13).

®Then the response guantities at time t+At can be
computed based on Eqgs. (7.7), (7.11) and (7.12) by

Uiy pr § = iy} + Ay | (7.17)

Uy ar § = g |+ AL § (7.18)

Wy ar )= g+ 1 Au, | (7.19)
WA, = e {Auy j— coliy —ealil; ;. (7.13a)
(ALl § = coAu, f—cq il j—cs il §  (7.13b)
{Aﬁt } = {ﬁt+At }_ {”t} (7.7)
VATl = ity pp b= g | (7.11)
{A“t } = {ut+At }_ {“t} (7.12)
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® As shown for SDOF system, the restoring force at
time t+At cannot be directly computed by simply
multiplying the displacement at time t+At by the
tangential stiffness at time t, that is,

VFr(t+ A0 # K Ry ar f

® {FR (ut+At)} has to be fR“ _
computed based on Eq. Tﬁﬁge”t'a}c
(d) by SUrrness {
(Pt} = (Fr )}y TR 2
+ K, [Au, | t Aut
(7.20) ‘—“
AFp, b= Fp(uyipr) b= Fr (1))} Uy Uptr At

=K, (u,) [ Au, | (d) =




10.3 ldealization of Damping Matrix

® In the analysis of linear MDOF system, damping
ratio is assigned for each mode by Egs. (6.60) and
(6.61) after decoupling the equations of motion into
n-sets of equation of motion of SDOF system. Hence,

It IS not needed to formulate damping matrix.

®However in the analysis of nonlinear MDOF system,

damping matrix has to be formulated because

damping ratio cannot be assigned for each mode by

Egs. (6.60) and (6.61).

Cr* — 25,,60,,

r

M,qG,+C.q.+K,.q, =F.

(6.61)

(6.60)
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® Rayleigh damping given by Eq. (6.56) is generally
assumed In nonlinear MDOS system.

® Pre-multiplying [q)]Tand post-multiplying [@] to
Eq. (6.56), one obtains

(@] [Clo]=al@] [M]@]+ slo] [K]®] (10.21)

® Based on the orthogonal condition by Egs. (6.52)
and (6.53), one obtains

C: =aM, + BK; (7.22)
® Dividing Eq. (7.22) by M,f
C: K.
L=at+ (7.23)
M. M.

l l
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(ICl=a|M]+ BIK] (6.56)




Ci* — Zé:ia)i
M;
M l

Eq. (7.23) can be written as

& :1(0["'/8(‘)1'] (7.24)
2\ o,
C K.
L=a+ f—% (7.23)
M; M;
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® Eq. (7.24) shows that ¢ is consisted of two
contributions.

gu

S
Gi

520‘

® Two parameters o and B can be determined by
assigning two pairs of (@; fl) and(w;, &)

® Two modes | and j have to be determined so that
the damping ratio at the predominant modes can
be captured by Eq. (7.24)

G = 1(0[ + ﬂwij (7.24) =
2 C()l'




® o and B are determined as

20: D - E Q - _a)._( =
{;}: @) J : <§l - (7.25)

wf _a)l.z _—1/0)j 1/0)1

4\
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7.4 Accuracy of Computed Responses (

)

® Approximation of the restoring force by Eq. (10.20)
IS sometimes insufficient to compute reliable
response of a structure.

Unbalance force at time t

kt—AtAut;—At o= Ji — f Rt

= f; —(mii, + cu, + fp,)
(7.26)
Aft—At = ft = ft—At
= Ky_pAUy_p;

= k(1 — 1 _pp)

U At Ui
Fr(u) = {Fr(uya )b+ K a AU, 5§ (7-20) 2




® By extending the unbalance force of SDOF system
to that of MDOF system, accuracy of the computed
response at time t is generally represented in terms
of unbalance force ( )

1OF; $ = \F, }— (M Rii, }+ [C ety §+ {F g, )
7.27
® Amount of the unbalance force can be( )

represented in various ways. One of the
expressions may be to define a ratio between the
norm of the unbalance force and the norm of the
external force as

Ap="—"<Apg (7.28)

where APS IS the threshold value (acceptable error)

F = J _]7Rt = f _(’mit + Cuy +th) (7.26) | .




7.5 Improvement of Accuracy of Solutions

1) Use of smaller time interval for numerical integration

@It is always effective to use smaller time interval
for numerical integration although computer time
reguired Iincreases.

®If strong nonlinearity exists only at several time
Intervals, it is useful to subdivide time interval only

where the accuracy by Eq. (7.27) is insufficient.

|| L | O

O | A\ A\
t— At t t+At (1 2A¢

d—D>
P
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2) Add unbalance force to incremental external force
at the next time step

@It is often used to add the unbalance force by Eq.
(7.27) to the incremental load in the next time
step. Rewriting Eq. (7.27) at time t, the unbalance
force at time t is

OF = W= (M R j+ [Clay j+FR ) (7.29)

and adding this unbalanced force to the
Incremental load in Eq. (10.12), one obtains

[M [{Adi, $+[C RAd, j+ K, [Au, $ = {AF, 1+ {0F, }
(7.30)

1OF e as = Frear = (M Ry a4 1C Rt pc $+ F R )
M RAii, + [CRAa, + K, {Au, j=AF ) (7. 12)(2%'27

N




® Based on Eqg. (7.10), the right hand side of Eq.
(7.30) becomes

AF j+10F, = W arj= 1+ 10F §
= Fraar i =1y = W= (M Jiiy j+ [C Rty §+ 1Py 1)

= {Fryn s+ ([M Jidi; §+ [Cliet; +{F P, §)
® Thus, Eqg. (7.30) becomes

[M RAii, j+ [ CRAG, b+ K, RAu, |
= {Feae i+ (M L, $+ [Cla, $+ {FRe ) (7.31)

{AF j={F (1 + A= {F (1)} (7.10)
(M iy j+ [CRAw, §+ (K [iAu, j = (AF, j+10F, ) (7:30)




® By adding unbalanced force to the incremental
force, accuracy of the solution of Eq. (7.12) iIs
generally improved.
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