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Chapter 10 Formulation of the Nonlinear 
Multi-Degree-of-Freedom Equations of 
Motion (非線形多自由度系の運動方程式)
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10.1 Incremental Equations of Motion of Nonlinear 
MDOF System (非線形多自由度系に対する増分系運動方程式)

Equilibrium of the inertia force, damping force, 
restoring force and external force for SDOF system is 
given by Eq. (2.1). By extending Eq. (2.1) to MDOF 
system, one obtains
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Eq. (10.1) can be written in matrix form by

{ } { } { } { })()()()( tFtFtFtF RDI =++ (7.2)

where, 

{ }IF : inertia force vector (慣性力ベクトル)

{ }RF : restoring force vector (復元力ベクトル)

{ }DF : damping force vector (減衰力ベクトル)

{ }F : external force vector (外力ベクトル)

{ } [ ]{ }uMFI &&=
{ } [ ]{ }uCFD &=

in which,
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If the system is linear, the restoring force 
vector is given by 

{ } [ ]{ }uKFR =

{ } { } { } { })()()()( tFtFtFtF RDI =++ (7.2)

However, note in Eq. (7.2) that because the 
system is not linear elastic, the restoring force 
vector cannot be evaluated by Eq. (7.3). Therefore, 
the equations of motion given by Eq. (10.2) 
cannot be solved by the mode superposition 
method whic we studied in Chapter 9. 

[ ]{ } [ ]{ } [ ]{ } { }PuKuCuM =++ &&& (6.45)

(7.3)

Then, Eq. (7.2) becomes completely the same 
with Eq. (6.45). 



6

In linear system

ttttR uukuf ∆+∆+ ≠ )()(

ttttR kuuf ∆+∆+ =)(
)( ttR uf ∆+
)( tR uf

Rf

tu ttu ∆+ u

However in 
nonlinear system

Linear system

Nonlinear system

However, if            is 
the restoring force 
at     ,  the restoring 
force at          may be 
approximately 
evaluated using the 
tangential stiffness (接
線剛性) by

)(tfR

tu
ttu ∆+

)( ttR uf ∆+
)( tR uf

tu ttu ∆+

Rf

u

Tangential 
stiffness

tu∆

tk

)()( tRttRRt ufuff −≡∆ ∆+

ttt uuk ∆≈ )( (a)
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is called incremental restoring force (増分復
元力) at time t (during        ). 

)( ttR uf ∆+
)( tR uf

tu ttu ∆+

Rf

u

Tangential 
stiffness

tu∆

tk
In Eq. (a), 

tttt uuu −=∆ ∆+
is called incremental 
displacement (増分変
位) at time t, and this 
represents an increase 
of displacement 
during a small time 
interval ∆t.

(b)

Rtf∆
tu∆

)()( tRttRRt ufuff −≡∆ ∆+ ttt uuk ∆≈ )( (a)

Tangential stiffness is defined by

tuu

R
t u

fk
=

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂= (c)

Rtf∆
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If time interval ∆t is small enough such as 1/100s-
1/10,000s, the approximation of the incremental 
restoring force by Eq. (a) may be sufficient.

Extending Eq. (a) to MDOF system, the 
incremental restoring force vector at time t is 
written by

)()( tRttRRt ufuff −≡∆ ∆+ ttt uuk ∆≈ )( (a)

{ } { } { }tttt uuu −≡∆ ∆+

where,          is called the incremental 
displacement vector (増分変位ベクトル) during time 
t+∆t and t, and is expressed by

{ }tu∆

{ } { } { })()( tRttRRt uFuFF −≡∆ ∆+

[ ]{ }ttt uuK ∆= )( (d)

(e)
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{ } { } { } { })()()()( ttFttFttFttF RDI ∆+=∆++∆++∆+
(7.4)

Based on Eq. (7.2), the dynamic equilibrium at time 
t+∆t can be written by

Subtracting Eq. (7.2) from Eq. (7.4), one obtains the 
dynamic equilibrium in an incremental form

[ ]{ } [ ]{ } [ ]{ }IMuuKuM g&&&& −=+ (6.16)

{ } { } { } { })()()()( tFtFtFtF RDI =++ (7.2)

{ } { } { })()( tFttFF IIIt −∆+≡∆

{ } { } { } { }tRtDtIt FFFF ∆=∆+∆+∆
where,

(7.5)

(7.6)
[ ]{ } [ ]{ }ttt uMuM &&&& −= ∆+

[ ]{ }tuM &&∆=
in which { } { } { }tttt uuu &&&&&& −≡∆ ∆+ (7.7)
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Similarly, 

{ } { } { })()( tFttFF DDDt −∆+≡∆
[ ]{ }tuC &∆=

{ } { } { }tttt uuu −≡∆ ∆+

(7.8)

(7.9)
{ } { } { })()( tFttFF RRRt −∆+≡∆

[ ]{ }tt uK ∆≈

{ } { } { }tttt uuu &&& −≡∆ ∆+

in which
(7.11)

(7.12)

{ } { } { })()( tFttFFt −∆+=∆ (7.10)

{ } { } { } { })()()()( ttFttFttFttF RDI ∆+=∆++∆++∆+
(7.4)

{ } { } { } { })()()()( tFtFtFtF RDI =++ (7.2)
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Substitution of Eqs. (7.6), (7.8), (7.9) and 
(7.10) into Eq. (7.5) leads to 

[ ]{ } [ ]{ } [ ]{ } { }ttttt FuKuCuM ∆=∆+∆+∆ &&& (7.12)

{ } { } { } [ ]{ }tIIIt uMtFttFF &&∆=−∆+≡∆ )()(
{ } { } { } [ ]{ }tDDDt uCtFttFF &∆=−∆+≡∆ )()(
{ } { } { } [ ]{ }ttRRRt uKtFttFF ∆=−∆+≡∆ )()(
{ } { } { })()( tFttFFt −∆+=∆

{ } { } { } { }tRtDtIt FFFF ∆=∆+∆+∆ (7.5)

(7.6)
(7.8)

(7.9)
(7.10)

where,
{ } { } { }tttt uuu &&&&&& −≡∆ ∆+ (7.7)

{ } { } { }tttt uuu −≡∆ ∆+

{ } { } { }tttt uuu &&& −≡∆ ∆+ (7.11)

(7.12)
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10.2 Direct Integration Method (直接積分法)

Based on the Newmark’s β method for SDOF system 
given by Eq. (5.27), the basic integration equations 
can be extended to MDOF system as

tttt ucuc∆ucu∆ &&&&& 431 −−= (5.27a)

tttt ucuc∆ucu∆ &&&& 542 −−= (5.27b)
in which

21
1
t

c
∆

=
σ t

c
∆

=
σ
δ

2 t
c

∆
=
σ

1
3

σ2
1

4 =c tc ∆⎟
⎠
⎞

⎜
⎝
⎛ −= 1

25 σ
δ (5.28)

{ } { } { } { }tttt ucucucu &&&&& 431 −−∆=∆
{ } { } { } { }tttt ucucucu &&&& 542 −−∆=∆

(7.13a)

(7.13b)
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In Eq. (7.13), combination of             and               
is the integration scheme corresponding to the 
constant acceleration method (一定加速度法), and 
combination of              and               the linear 
acceleration method (線形加速度法)

2/1=δ 4/1=σ

6/1=σ 2/1=δ

Similar to Eq. (5.29), substitution of Eq. (7.13) 
into Eq. (7.12) leads to

{ } { } { } { }tttt ucucucu &&&&& 321 −−∆=∆
{ } { } { } { }tttt ucucucu &&&& 542 −−∆=∆

(7.13a)

(7.13b)

[ ]{ } [ ]{ } [ ]{ } { }ttttt FuKuCuM ∆=∆+∆+∆ &&& (7.12)
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ttt p∆∆uk ~~ =
in which, 

ttt ccmckk 21
~ ++=

(5.29)

(5.30)

( ) tttt uccmcpp &43
~ ++∆=∆

( ) tt uccmc &&54 ++ (5.31)

[ ]{ } { }ttt FuK ~~ ∆=∆
in which, 

[ ] [ ] [ ] [ ]CcMcKK tt 21
~ ++=

(7.14)

(7.15)

{ } { } [ ] [ ][ ]{ }ttt uCcMcFF &43
~ ++∆=∆

[ ] [ ][ ]{ }tuCcMc &&54 ++ (7.16)
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{ } { } { }tttt uuu &&&&&& ∆+=∆+ (7.17)

{ } { } { }tttt uuu ∆+=∆+

{ } { } { }tttt uuu &&& ∆+=∆+ (7.18)

(7.19)

Once the incremental displacements          are 
computed by solving Eq. (7.14), the incremental 
accelerations         and incremental velocities         
during ∆t can be obtained from Eq. (7.13). 

Then the response quantities at time t+∆t can be 
computed based on Eqs. (7.7), (7.11) and (7.12) by

{ }tu&&∆ { }tu&∆
{ }tu∆

{ } { } { }tttt uuu &&&&&& −≡∆ ∆+ (7.7)

{ } { } { }tttt uuu −≡∆ ∆+

{ } { } { }tttt uuu &&& −≡∆ ∆+ (7.11)
(7.12)

{ } { } { } { }tttt ucucucu &&&&& 321 −−∆=∆
{ } { } { } { }tttt ucucucu &&&& 542 −−∆=∆

(7.13a)
(7.13b)
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)( ttR uf ∆+
)( tR uf

tu ttu ∆+

Rf

u

Tangential 
stiffness

tu∆

tk

As shown for SDOF system, the restoring force at 
time t+∆t cannot be directly computed by simply 
multiplying the displacement at time t+∆t by the 
tangential stiffness at time t, that is,

{ } [ ]{ }tttR uKttF ∆+≠∆+ )(

{ } { } { })()( tRttRRt uFuFF −≡∆ ∆+

[ ]{ }ttt uuK ∆= )( (d)

{ } { })()( tRttR uFuF =∆+

[ ]{ }tt uK ∆+
(7.20)

has to be 
computed based on Eq. 
(d) by

{ })( ttR uF ∆+
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10.3 Idealization of Damping Matrix

****
rrrrrrr PqKqCqM =++ &&& (6.60)

rr
r

r
M
C ωξ2*

*
= (6.61)

In the analysis of linear MDOF system, damping 
ratio is assigned for each mode by Eqs. (6.60) and 
(6.61) after decoupling the equations of motion into 
n-sets of equation of motion of SDOF system. Hence, 
it is not needed to formulate damping matrix.

However in the analysis of nonlinear MDOF system, 
damping matrix has to be formulated because 
damping ratio cannot be assigned for each mode by 
Eqs. (6.60) and (6.61). 
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[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]ΦΦ+ΦΦ=ΦΦ KMC TTT βα

Rayleigh damping given by Eq. (6.56) is generally 
assumed in nonlinear MDOS system. 

Pre-multiplying         and post-multiplying        to 
Eq. (6.56), one obtains

[ ]TΦ [ ]Φ

(10.21)

Based on the orthogonal condition by Eqs. (6.52) 
and (6.53), one obtains

[ ] [ ] [ ]KMC βα += (6.56)

***
iii KMC βα += (7.22)

Dividing Eq. (7.22) by        , 

*

*

*

*

i

i

i

i
M
K

M
C βα += (7.23)

*
iM



19

Since

ii
i

i
M
C ωξ2*

*
=

2
*

*
i

i

i
M
K ω=

Eq. (7.23) can be written as

⎟
⎠

⎞
⎜
⎝

⎛
+= i
i

i βω
ω
αξ

2
1 (7.24)

*

*

*

*

i

i

i

i
M
K

M
C βα += (7.23)



20

Eq. (7.24) shows that     is consisted of two 
contributions.

ξ

ξ

ω
ω
αξ
2

=
2
βωξ =

iω jω

iξ
jξ

⎟
⎠

⎞
⎜
⎝

⎛
+= i
i

i βω
ω
αξ

2
1 (7.24)

Two parameters α and β can be determined by 
assigning two pairs of            and),( ii ξω ),( jj ξω

Two modes i and j have to be determined so that 
the damping ratio at the predominant modes can 
be captured by Eq. (7.24)
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α and β are determined as

(7.25)
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Unbalance force at time t

ttf ∆−

ttu ∆−

tf
tRf

~

tu

tttt uk ∆−∆− ∆
( )Rtttt fucumf ++−= &&&

Rttt fff ~−=δ

ttttt fff ∆−∆− −=∆
tttt uk ∆−∆− ∆=

)( ttttt uuk ∆−∆− −=

7.4 Accuracy of Computed Responses (解析結
果の精度)

Approximation of the restoring force by Eq. (10.20) 
is sometimes insufficient to compute reliable 
response of a structure.

{ } { } [ ]{ }ttttttRtR uKuFuF ∆−∆−∆− ∆+= )()( (7.20)

(7.26)



23

By extending the unbalance force of SDOF system 
to that of MDOF system, accuracy of the computed 
response at time t is generally represented in terms 
of unbalance force (不つり合い力)

{ } { } [ ]{ } [ ]{ } { })( Rttttt FuCuMFF ++−= &&&δ
(7.27)

PS
t

t
P F

F
∆<=∆

δ

Amount of the unbalance force can be 
represented in various ways. One of the 
expressions may be to define a ratio between the 
norm of the unbalance force and the norm of the 
external force as

where        is the threshold value (acceptable error)PS∆

(7.28)

( )RttttRttt fucumffff ++−=−= &&&
~δ (7.26)
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It is always effective to use smaller time interval 
for numerical integration although computer time 
required increases. 

If strong nonlinearity exists only at several time 
intervals, it is useful to subdivide time interval only 
where the accuracy by Eq. (7.27) is insufficient. 

7.5 Improvement of Accuracy of Solutions

1) Use of smaller time interval for numerical integration

t tt ∆+

n
tt ∆=∆~

tt ∆− tt ∆+ 2
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It is often used to add the unbalance force by Eq. 
(7.27) to the incremental load in the next time 
step. Rewriting Eq. (7.27) at time t, the unbalance 
force at time t is 

[ ]{ } [ ]{ } [ ]{ } { } { }tttttt FFuKuCuM ∂+∆=∆+∆+∆ &&&

{ } { } [ ]{ } [ ]{ } { })( Rttttt FuCuMFF ++−= &&&δ (7.29)

and adding this unbalanced force to the 
incremental load in Eq. (10.12), one obtains

(7.30)

2) Add unbalance force to incremental external force 
at the next time step

[ ]{ } [ ]{ } [ ]{ } { }ttttt FuKuCuM ∆=∆+∆+∆ &&& (7.12)

{ } { } [ ]{ } [ ]{ } { })( tRttttttttt FuCuMFF ∆+∆+∆+∆+∆+ ++−= &&&δ
(7.27)
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Based on Eq. (7.10), the right hand side of Eq. 
(7.30) becomes

{ } { } { } { } { }tttttt FFFFF ∂+−=∂+∆ ∆+

{ } { } { } [ ]{ } [ ]{ } { }{ })( Rttttttt FuCuMFFF ++−−−= ∆+ &&&

{ } [ ]{ } [ ]{ } { })( Rttttt FuCuMF +++= ∆+ &&&

[ ]{ } [ ]{ } [ ]{ } { } { }tttttt FFuKuCuM ∂+∆=∆+∆+∆ &&& (7.30)

{ } { } { })()( tFttFFt −∆+=∆ (7.10)

Thus, Eq. (7.30) becomes 

{ } [ ]{ } [ ]{ } { })( Rttttt FuCuMF +++= ∆+ &&&

[ ]{ } [ ]{ } [ ]{ }tttt uKuCuM ∆+∆+∆ &&&

(7.31)
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By adding unbalanced force to the incremental 
force, accuracy of the solution of Eq. (7.12) is 
generally improved.


