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CHAPTER 3 RESPONSE TO HARMONIC 
LOADING (調和振動外力を受け場合の振動)
3.1 Undamped System

Fig. 2.1 Idealized SDOF system
(a) Basic components (b) Forces in equilibrium

Assume that the system of Fig. 2.1 is subjected to 
a harmonic varying load p(t) of sine-wave form 
having an amplitude p0 and circular frequency    (角
振動数）.

ω

1) Complementary Solution (Free Vibration Solution; 
自由振動解）
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Fig. 2.1 Idealized SDOF system

(a) Basic components (b) Forces in equilibrium

Substituting                        into Eq. (2.3), one 
obtains

tptp ωsin)( 0=

tptkvtvctvm ωsin)()()( 0=++ &&& (3.1)

)()()()( tptkvtvctvm =++ &&& (2.3)

Before considering damped vibration, it is 
instructive to examine the behavior of an 
undamped system

tptkvtvm ωsin)()( 0=+&& (3.2)
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Eq. (3.2) has a complementary solution (Free 
Vibration solution;自由振動解) of the free-vibration 
fom of Eq. (2.31).

tBtAtv ωω sincos)( += (2.31)
tptkvtvm ωsin)()( 0=+&& (3.2)

tBtAtvc ωω sincos)( += (3.3)
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2) Particular Solution (特解、Forced vibration、強制
振動応答)

Under a harmonic excitation, it is reasonable to 
assume that the corresponding motion is harmonic 
and in phase (位相も荷重と同じ) with the loading; thus 
the particular solution is

tCtvp ωsin)( = (3.4)

in which the amplitude C is to be evaluated.

Substituting Eq. (3.4) into Eq. (3.2) gives

tptkvtvm ωsin)()( 0=+&& (3.2)

tptkCtCm ωωωω sinsinsin 0
2 =+− (3.5)
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Dividing through by             and by k and noting 
that                 , one obtains after some 
rearrangement

tωsin
2/ ω=mk

2
0

1
1
β−

=
k
pC (3.6)

in which      is defined as the ratio of the applied 
loading frequency      to the natural free-vibration 
frequency      , i.e.,

β
ω

ω

ω
ωβ ≡ (3.7)
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3) General Solution (一般解)

The general solution of Eq. (3.2) is now obtained 
by combining the complementary solution (free 
vibration, 自由振動解） and particular solution (特解、
forced excitation vibration solution; 強制振動解) as

)()()( tvtvtv pc +=

t
k
ptBtA ω

β
ωω sin

1
1sincos 2

0
−

++= (3.8)

tptkvtvm ωsin)()( 0=+&& (3.2)

For the system starting from rest, i.e., 
, it is easy to show that

0)0()0( == vv &

0=A 2
0

1
1
β

β
−

−=
k

pB (3.9)
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In this case, Eq. (3.8) becomes

Displacement which would be developed by 
the load p0 applied statically （静的変位）

Magnification factor (MF) (増幅率)
representing the amplification effect of the 
harmonically applied loading

( )tt
k
ptv ωβω

β
sinsin

1
1)( 2

0 −
−

= (3.10)

ω
ωβ ≡ (3.7)
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represents the response 
component at the frequency of the applied 
loading, and it is called the steady-state 
response (定常応答)

tωsin

( )tt
k
ptv ωβω

β
sinsin

1
1)( 2

0 −
−

= (3.10)

is the response component at the 
natural period of the structure (構造物の固有振
動数) and  is the free-vibration (自由振動) 
effect controlled by the initial condition. 
Since in a practical case, damping will cause 
the term to vanish eventually, it is termed 
the transient response (過渡応答).

tωβ sin
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4) Response Ratio (応答比）

A convenient measure of the influence of dynamic 
loading is provided by the ratio of the dynamic 
displacement response (動的応答変位) to the 
displacement produced by static load p0 (静的荷重に
よって生じる静的変位), i.e.,

kp
tv

v
tvtR
st /

)()()(
0

=≡ (3.11)

( )tt ωβω
β

sinsin
1

1
2 −

−
= (3.12)

)()()( tRtRtR sp +=

Transient response (過渡応答)
Steady-state response (定常応答)

)sin(sin ttMF ωβω −=
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Fig. 3.1(a) shows the steady-state response, and 
Fig. 3.1(b) represents transient response while Fig. 
3.1(c) represents the total response. It is assumed 
here      3/2/ =≡ ωωβ

The two 
components get in 
phase and then out 
of phase again, 
causing a “beating”
effect (ビート現象) in 
the total response.

At t=0, 0)0( =v
and 0)( =tv&
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3.2 System with viscous damping (粘性減衰のある系)

tptkvtvctvm ωsin)()()( 0=++ &&& (3.1)

Dividing Eq. (3.1) by m and noting that                
leads to

ξω2/ =mc

t
m
ptvtvtv ωωξω sin)()(2)( 02 =++ &&& (3.13)

The complementary solution (transient solution; 
過渡応答解) is the damped free-vibration response 
(減衰自由振動) by

( ) t
DDc etBtAtv ξωωω −+= sincos)( (3.14)

The particular solution (特解、steady-state 
solution; 定常解) is given as

tGtGtvp ωω sincos)( 21 += (3.15)
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It should be noted in Eq. (3.15) that the cosine 
term is required as well as the sine term because, in 
general, the response of a damped system is not in 
phase with the loading (refer to Eq. (3.4) for the 
response of an undamped system)

tCtvp ωsin)( = (3.4)

tGtGtvp ωω sincos)( 21 += (3.15)

Substituting Eq. (3.15) into Eq. (3.13) leads to

{ } tGGG ωωξωωω cos)2( 2
12

2
1 ++−

0sin)2( 02
21

2
2 =

⎭
⎬
⎫

⎩
⎨
⎧ −+−−+ t

m
pGGG ωωξωωω

(3.16)

t
m
ptvtvtv ωωξω sin)()(2)( 02 =++ &&& (3.13)
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In order to satisfy this equation for all values of t, 
it is necessary that each of the two bracket quantities 
equal to zero;

0)2()1( 2
2

1 =+− ξββ GG

k
pGG 0

1
2

2 )2()1( =−− ξββ
(3.17)

Solving these two equations simultaneously yields

222
0

1
)2()1(

2
ξββ

ξβ
+−

−=
k
pG

222

2
0

2
)2()1(

1
ξββ

β
+−

−=
k
pG

(3.18)
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Based on those results, the total displacement is 
obtained in the form

( ) t
DD etBtAtv ξωωω −+= sincos)(

{ }tt
k
p ωξωωβ

ξββ
cos2sin)1(

)2()1(
1 2

222
0 −−

+−
+

(3.19)

The transient response (過渡応答), which damps 
out (減衰していく) in accordance with )exp( tξω−

The steady-state harmonic response which 
will continue indefinitely (無限に続く定常応答)

The constants A and B can be evaluated for any 
given initial conditions,        and )0(v )0(v&
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Steady-state response (定常応答)

Of great interest is the steady-state harmonic 
response.

{ }tt
k
ptvp ωξωωβ

ξββ
cos2sin)1(

)2()1(
1)( 2

222
0 −−

+−
=

(3.20)

222
0

1
)2()1(

2
ξββ

ξβ
+−

−=
k
pG

222

2
0

2
)2()1(

1
ξββ

β
+−

−=
k
pG

(3.18)

tGtGtvp ωω sincos)( 21 += (3.15)
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The ratio of the resultant harmonic amplitude to 
the static displacement which would be produced 
by the force p0 will be called the dynamic 
magnification factor D (動的増幅率), thus

2220 )2()1(

1
/ ξββ

ρ

+−
=≡

kp
D (3.24)

Fig. 3.3 Dynamic magnification 
factor vs. damping and 
frequency

Fig. 3.4 Phase angle vs. 
damping and frequency
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Example E3-1

Harmonic-loading machine

A portable harmonic-loading machine （起振機）
provides an effective means for evaluating the 
dynamic properties of structures in the field.

By operating the machine at two different 
frequencies and measuring the resulting structural 
response amplitude and phase relationship in each 
case, it is possible to determine the mass, damping 
and stiffness of a SDOF structure. 



19

In a test of this type on a simply supported bridge, 
the shaking machine was operated at a frequency of     

and                     , with a forced 
amplitude                         in each case. 

srad /161 =ω srad /252 =ω
)8.226(500 kgflb

The response amplitudes and phase relationship 
measured in the two cases were

)103.18(102.7 33
1 cmin −− ××=ρ

reedeg151 =θ 966.0cos 1 =θ 259.0sin 1 =θ

)108.36(105.14 33
2 cmin −− ××=ρ

reedeg552 =θ 574.0cos 2 =θ 819.0sin 2 =θ
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2 cmin −− ××=ρ

reedeg552 =θ 574.0cos 2 =θ 819.0sin 2 =θ
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It is convenient to rewrite Eq. (3.22) as 

{ }222
0

)1/(21

1
1

1

βξββ
ρ

−+−
=

k
p

222
0

)2()1(

1

ξββ
ρ

+−
≡

k
p

(3.22)

Because         is provided as based on Eq. (3.23)θtan

21
2tan
β
ξβθ
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
≡

−

2

1

1
2tan
β
ξβθ (3.23)

is written asρ

2
0

1
cos
β
θρ

−
=

k
p

(a)
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With further algebraic simplification, 

mkkk 2
2

2 1)1( ω
ω
ωβ −=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−=−

ρ
θcos0p= 2

0
1
cos
β
θρ

−
=

k
p

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

×

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

−
−

−

× −

3

102.7
966.0

2

2

105.14
574.0500

251
161 3

lb
m
k

)103.18(102.7 33
1 cmin −− ××=ρ

reedeg151 =θ 966.0cos 1 =θ

)108.36(105.14 33
2 cmin −− ××=ρ

reedeg552 =θ 574.0cos 2 =θ
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This equation can be solved to give

)/108.17(/10100 33 cmkgfinlbk ××=

)/95.22(/5.128 222 cmskgfinslbm ⋅⋅=

The natural frequency is given as

srad
m
k /9.27==ω

Evaluation of stiffness and mass

Evaluation of natural frequency
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Evaluation of damping ratio

From 2
0

1
cos
β
θρ

−
=

k
p

(a)

k
p
ρ

θβ cos1 02 =−

21
2tan
β
ξβθ
−

=Substituting this into 

ρω
θ

βρ
θ

ρ
θ

β
θξ

cc
p

k
p

k
p sin

2
sincos

2
tan 000 ===

Thus with the data of the first test

inslbpcc c /125,1
102.716
259.0500sin

3
0 ⋅=

××

×=== −ρω
θξ

From the second test

inchslbc /056,1
105.1525

819.0500
3 ⋅=

××

×= −



25

It should be noted that the damping coefficient c 
obtained from the second test is close with 
engineering accuracy with c obtained from the first 
test.

The damping ratio therefore is

%7.15
101002

9.27125,1
/2 3 =

××

×==
ω

ξ
k
c



26

3.3 Resonance Response

From Eq. (3.12), it is apparent that the steady-
state response amplitude of an undamped system 
tends to toward infinitively as the frequency ratio    
approached unity.

( )tttR ωβω
β

sinsin
1

1)( 2 −
−

= (3.12)

(3.7)

Fig. 3.3 Dynamic magnification factor vs. damping and frequency

ω
ωβ ≡

This tendency can be 
seen in Fig. 3.3 for the 
case of      0=ξ
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From Eq. (3.24), it is seen that the dynamic 
magnification factor (動的増幅率) D under this 
condition (        ) is 1=β

ξβ 2
1

1 ==D (3.31)

To find the maximum or peak value of dynamic 
magnification factor, one must differentiate Eq. (3.24) 
with respect to     and solve the resulting expression 
for      obtaining

β
β

221 ξβ −=peak (3.32)

Eq. (3.32) yields positive real value for damping 
ratio 2/1<ξ

2220 )2()1(

1
/ ξββ

ρ

+−
=≡

kp
D (3.24)



28

Substituting Eq. (3.32) into Eq. (3.24),

D
D

ω
ω

ξξξ 2
1

12

1
2max =

−
= (3.33)

For typical values of structural damping, say          , 
the difference between Eq. (3.33) and the simpler Eq. 
(3.31) is very small. 

1.0<ξ

ξβ 2
1

1 ==D (3.31)

221 ξβ −=peak (3.32)

2220 )2()1(

1
/ ξββ

ρ

+−
=≡

kp
D (3.24)
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For more complete understanding of the nature 
of the resonant response (共振応答) of a structure 
subjected to harmonic loading, consider the general 
response Eq. (3.19), which includes the transient 
response (過渡応答) as well as the steady response 
(定常応答).

( ) t
DD etBtAtv ξωωω −+= sincos)(

ξ
ω

2
cos0 t

k
p+ (3.34)

( ) t
DD etBtAtv ξωωω −+= sincos)(

{ }tt
k
p ωξωωβ

ξββ
cos2sin)1(

)2()1(
1 2

222
0 −−

+−
+

(3.19)
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Assuming that the system starts from rest, i.e., 
and              the constants are0)0( =v 0)0( =v&

ξ2
10

k
pA =

2
00

12

1
2 ξω
ω

−
==

k
p

k
pB

D
(3.35)

Thus, Eq. (3.34) becomes

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
= − tett

k
ptv t

DD ωωω
ξ

ξ
ξ

ξω coscossin
12

1)(
2

0

(3.36)
For the amounts of damping to be expected in 

structural system, the term             is nearly unity
. In this case, Eq. (3.36) can be approximated   

21 ξ−

( ){ }tete
kp

tvtR tt ωξω
ξ

ξωξω sincos1
2
1

/
)()(

0

−− +−=≈ (3.37)
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For zero damping, the approximation by Eq. 
(3.37) is indeterminate; but when L’Hospital’s rule is 
applied, the response ratio for the undamped
system is found to be

)cos(sin
2
1)( ttttR ωωω −≈ (3.38)

Plot of Eq. (3.37) are shown in Fig. 3.7. 

L’Hopital’s rule (or, Bernoulli’s rule)

0)(lim)(lim ==
→→

xgxf
cxcx

)(
)(

lim)(
)(

lim xg
xf

xg
xf

cxcx ′
′

=
→→
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Undamped system

Damped system

Note that because the 
terms containing              
contribute little to the 
response in Eq. (3.38), 
the peak values build up 
linearly in the undamped
system, changing by an 
amount of     in each cycle

however they build up in 
accordance with 

for the damped system.

π

{ }1)exp()2/1( −− tξωξ

tωsin

)cos(sin
2
1)( ttttR ωωω −≈

(3.38)

(3.39)
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In the damped system, the envelope function 
becomes as shown in Fig. 3.8.

{ }1)exp()2/1( −− tξωξ

tt ωω =

(3.39)


