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CHAPTER 3 RESPONSE TO HARMONIC

LOADING ( )
3.1 Undamped System

1) Complementary Solution (Free Vibration Solution;

® Assume that the system of Fig. 2.1 is subjected to
a harmonic varying load p(t) of sine-wave form
having an amplitude p, and circular frequency @ (

(a) Basic components (b) Forces in equilibrium
Fig. 2.1 Idealized SDOF system
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® Substituting p(t) = pgSinaet into Eqg. (2.3), one
obtains

mv(t) +cv(t) + kv(t) = pgsinwt (3.1)

my(t) + cv(t) + kv(t) = p(t) (2.3)

® Before considering damped vibration, it is
Instructive to examine the behavior of an
undamped system

mv(t) + kv(t) = pgsin at (3.2)

(a) Basic components (b) Forces in equilibrium
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Fig. 2.1 lIdealized SDOF system



® Eg. (3.2) has a complementary solution (Free
Vibration solution; ) of the free-vibration
fom of Eq. (2.31).

Ve (t) = Acosat + Bsinat (3.3)

mv(t) +kv(t) = pgsin ot (3.2)
v(t) = Acosat + Bsin ot (2.31)




2) Particular Solution ( Forced vibration

)

® Under a harmonic excitation, it is reasonable to
assume that the corresponding motion is harmonic

and in phase ( ) with the loading; thus
the particular solution is
vp(t):CSina_)t (3.4)

In which the amplitude C is to be evaluated.

® Substituting Eqg. (3.4) into Eqg. (3.2) gives
—m@?Csin @t + kCsin ot = pgSinwt  (3.5)

mv(t) + kv(t) = pgsinmt (3.2)




® Dividing through by Sih@t and by k and noting
that k/m = a)z , one obtains after some

rearrangement

Ppo 1
C=
1 g2 (3.6)

in which [/ is defined as the ratio of the applied
loading frequency @ to the natural free-vibration

frequency @ , I.e.,

p

(3.7)
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3) General Solution ( )

® The general solution of Eqg. (3.2) is now obtained
by combining the complementary solution (free
vibration, and particular solution (

forced excitation vibration solution; ) as
V(t) = v (t) +vp(t)
— Acosat + Bsin af + 0 L sinot  (3-8)
k 1-— 52
mv(t) + kv(t) = pgsin ot (3.2)

® For the system starting from rest, i.e., V(0) =v(0) =0
, It IS easy to show that
a-o B=-_PA 1 (3.9)
k 1- 52 7




® In this case, Eq. (3.8) becomes

(sinwt — Bsin wt) (3.10)

_ Po
v(t) = y 5

T

Displacement which would be developed by
the load p, applied statically

Magnification factor (MF) ( )
representing the amplification effect of the

harmonically applied loading

(3.7)
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s (sm — Bsinat) (3.10)

v(t) = 'T(O

Sinwt represents the response
component at the freqguency of the applied
loading, and it is called|the steady-state
response ( )

psinat is the response component at the
natural period of the structure (

) and is the free-vibration ( )
effect controlled by the initial condition.
Since In a practical case, damping will cause
the term to vanish eventually, it is termed
the transient response ( ). °



4) Response Ratio (

® A convenient measure of the influence of dynamic
loading is provided by the ratio of the dynamic

displacement response ( ) to the
displacement produced by static load p, (
), l.e.,
V(1 V(t
R(t) = v _ Vv (3.11)
Vst1 Po /K

= 5 (sinot - gsin at) (3.12)
1- B
= MF (sin @t — Ssin at)

R(t) = Rp () +Rs (1)

I
{ Transient response ( 1()
Steady-state response ( )



® Fig. 3.1(a) shows the steady-state response, and
Fig. 3.1(b) represents transient response while Fig.
3.1(c) represents the total response. It is assumed

here f=wolw=2/3 B
T'V!'F /\

®The two @ \4' < ;

components get in | r=Z

phase and then out * RO

of phase again,

causing a “beating”
effect ( ) In
the total response.

(b)

e At t=0, Vv(0)=0 ©
and V(1) =0

Frequency ratio 8 = -%

FIGURE 3-1
Response ratio produced by sine wave excitation starting from at-rest initial conditions:

(@) steady state; (b) transient; (c) total R(r).



3.2 System with viscous damping ( )

mv(t) +cv(t) + kv(t) = pgsinwt (3.1)

® Dividing Eg. (3.1) by m and noting that ¢c/m=2fw
leads to

V() + 22V (t) + @?V(t) = %sin ot (3.13)

® The complementary solution (transient solution;
) is the damped free-vibration response

( ) by

V¢ (t) = (Acoswpt + Bsinawpt e (3.14)
® The particular solution ( steady-state
solution; ) IS given as

Vp(t) = G cosat + G, sin ot (3.15)
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® It should be noted in Eq. (3.15) that the cosine
term is required as well as the sine term because, In
general, the response of a damped system is not In
phase with the loading (refer to Eq. (3.4) for the
response of an undamped system)

Vp(t) =Gy cosmt + Gy sin at (3.15)
vp(t) = Csinot (3.4)

® Substituting Eq. (3.15) into Eqg. (3.13) leads to
%Gla—)z +Grw(2éw) + Glcoz }coscﬁt
T {— Gr@” — Gy (2Ew) + Gr? —'?r?}sin @t =0

(3.16)
V(t) + 2EaN(t) + 02V (t) = %sin ot (3.13)

=
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® In order to satisfy this equation for all values of t,
It IS necessary that each of the two bracket quantities
equal to zero;

Gy(1-B%)+Gp(2£8) =0

3.17
Gy(1- %) -Gy(256) = =5
® Solving these two equations simultaneously yields
G = pO _Zgﬂ
bk -2+ (22p)
(3.18)

Po 1—,32
Gh =
2Tk (1 2%+ (28p)>
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® Based on those results, the total displacement is

obtained In t

v(t) = (Acoswpt + Bsinawpt)e

he form
—Eak

+Po 5 21 5 {(1—,62)sina7[—2§a)cosa7[}
K (14 8°)° +(2£p)
(3.19)
The transient response ( ), which damps

out (

in accordance with exp(—£at)

The steady-state harmonic response which
will continue indefinitely ( )

® The constants A and B can be evaluated for any

given initial

conditions, v(0) and v(0) =



Steady-state response ( )

® Of great interest is the steady-state harmonic

response.
Po 1 { ]
(1) = (1 ,B )sin ot — 2&wcos wt
Yp K (1_ 2212 J
(L- B2)° +(2£B)° =
Vy(t) = G cosat + Gy sin wt (3.15)
Gl _ pO 2_22§ﬂ 5
k (1—
IOO(1 ﬁl)_ ;§2§ﬁ) (3.18)
G2 = K (1. 22\2 2
(1-57)" +(255)
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® The ratio of the resultant harmonic amplitude to
the static displacement which would be produced
by the force p, will be called the dynamic

maghnification factor D ( ), thus
D= " = . (3.24)
Po/k (1~ 5)? +(225)° |
4 ) -\g [, 180° §=i:}§—* ;
eyl =

| // \B/*'T“-z

D 2 / |,_
| X

—
5 E=1.0 _ "

B Frequency ratio,

Fig. 3.3 Dynamic magnification
factor vs. damping and
frequency

Phase angle, 6
=]

0

Fig. 3.4 Phase angle vs.

damping and frequency *’



Example E3-1

Harmonic-loading machine

® A portable harmonic-loading machine

provides an effective means for evaluating the
dynamic properties of structures in the field.

@By operating the machine at two different
frequencies and measuring the resulting structural
response amplitude and phase relationship in each
case, it iIs possible to determine the mass, damping
and stiffness of a SDOF structure. 18



® |In a test of this type on a simply supported bridge,
the shaking machine was operated at a frequency of
@ =16rad /s and @, =25rad /s, with a forced
amplitude 5001b(226.8kgf ) in each case.

® The response amplitudes and phase relationship
measured in the two cases were

01 =7.2x1073in(18.3x10">cm)
6, =15degree  cos@; =0.966 Sin6 =0.259

0y =14.5x10~3n(36.8 x10"3cm)
6, =55degree  cos@, =0.574 Sinb =0.819
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01 =7.2x1073in(18.3x10">cm)
6, =15degree  cos@; =0.966 Sin6 =0.259

0y =14.5x10~3in(36.8 x10>cm)
6, =55degree  cosd, =0.574 Sind, =0.819
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® It is convenient to rewrite Eq. (3.22) as
_Ppo 1 1

T k-8 L begia pyf
Po 1

k(- p2)2+(28B)°

® Because tand is provided as based on Eq. (3.23)

p = (3.22)

_ 2 -1
ta”‘g‘l_ﬂz 0 = tan 295'32} (3.23)
1-p
® O |s written as
0
b= Po COS @)

k 1_ﬁ2 21



® \With further algebraic simplification,

_\2
K(1— £%) = k- 1{”) L~k —@°m

- 145x10~3

@
: ‘ ~ Ppp cosé
_ Pgcosé P o 1—,82
e,
(0966 ]

k -3
{m}=500|b4 o |

01 =17.2x10~%in(18.3x10">cm)
91 — ]_5deg ree COS@l =0.966

Py =14.5 Xlo_gin(36.8 XlO_ch)
6, =55degree  C0S6h =0.574
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Evaluation of stiffness and mass
® This equation can be solved to give

k =100x10°Ib/in(17.8 x10°kgf /cm)
m =128.5Ib-s? /in? (22.95kgf -s2 /cm)

Evaluation of natural frequency
® The natural frequency Is given as

a):\F: 27.9rad /s
m
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Evaluation of damping ratio
Po COSd

= a
® From /0 k 1_ﬁ2 ( )
1—,82 _ Pgcosé
=< 220
® Substituting this into tanéd = >
1-4

= tan@ pgcosé ppsingd ppsiné
28 Pk 2Bk cowp

® Thus with the data of the first test
sind  500x0.259

wp 16x7.2x10~°

® From the second test

= e =

 25%15.5x1073

=1125Ib-s/in




® It should be noted that the damping coefficient c
obtained from the second test is close with
engineering accuracy with ¢ obtained from the first

test.
® The damping ratio therefore is
= c  1125x27.9

= 5 =15.7%
2klw  2x100x10
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3.3 Resonance Response

® From Eq. (3.12), it is apparent that the steady-
state response amplitude of an undamped system
tends to toward infinitively as the frequency ratio
approached unity.

R(t) = (sinwt— Bsinat) (3.12)

2

p? (37 4

7, ) \M

® This tendency can be _4/ g=03
seen in Fig. 3.3 for the

—
case of ¢£=0 ol — = ——

0 1 2 3

Fig. 3.3 Dynamic magnification factor vs. damping and frequency



® From Eqg. (3.24), it is seen that the dynamic

magnification factor ( ) D under this
condition ( f=1) is
1
Dp_1=— 3.31
£=1 2 ( )
0 1

Tpolk Ja-pPeep? 0 @

® To find the maximum or peak value of dynamic
maghnification factor, one must differentiate Eq. (3.24)
with respect to f/ and solve the resulting expression

for £ obtaining
P peak :\/1_252 (3.32)

® Eqg. (3.32) yields positive real value for damplng
ratio £ <1/+/2




® Substituting Eq. (3.32) into Eq. (3.24),

D B 1 1 o
Mmax — o
2£\1-¢£2 28 op

(3.33)

D P

1

o/k (- 522 + (228)°
ﬂpeak = \/1—252

(3.32)

(3.24)

® For typical values of structural damping, say £ <0.1,
the difference between Eq. (3.33) and the simpler Eq.

(3.31) is very small.

Dp_1 =

1

26

(3.31)
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® For more complete understanding of the nature
of the resonant response ( ) of a structure
subjected to harmonic loading, consider the general
response Eq. (3.19), which includes the transient
response ( ) as well as the steady response

( )-

—Eat N Po COS it

V(t) = (Acoswnt + BSIn wnpt)e
(t) =( D pt) C 2c

(3.34)

v(t) = (Acoswpt + Bsin cth)e_‘f“)t

. Po 1 1
(1- ,B )sinwt —2Ewcos wt
Tk @22+ (228)2 3 ’

(3.19)
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® Assuming that the system starts from rest, i.e.,
v(0) =0 and V(0) =0 the constants are

_Pol z_Po ® _po 1
K 2¢ K 20p  kp)1_g2 O

® Thus, Eq. (3.34) becomes

N

e

v(t) = . po{ ] sina)Dt+cosa)Dt}e5“i—cosa)t

g (3.36)

® For the amounts of damping to be expected In
structural system, the term /1_ 2 s nearly unity
. In this case, Eq. (3.36) can be approximated

vit) 1
O otk "2

{( oo 1)cosa)t+§e_§‘“tsina)t}(i.37)



® For zero damping, the approximation by Eq.
(3.37) is indeterminate; but when L’Hospital’s rule is
applied, the response ratio for the undamped
system is found to be

R(t) ~ ;(sinwt—wtcoswt) (3.38)

® Plot of Eg. (3.37) are shown In Fig. 3.7.

L’Hopital’s rule (or, Bernoulli’s rule)

lim £ (x)=limg(x) = 0
X—>C X—C

0 ()

g0 4T g'(x) )




® Note that because the
terms containing SIin @t
contribute little to the
response in Eq. (3.38),
the peak values build up
linearly in the undamped
system, changing by an
amount of 7 in each cycle

®however they build up In
accordance with

(1/2&){exp(=éat) -1} (3.39)

for the damped system.

Response ratio, R(f)

R(t) z;(sina)t—a)tcosa)t)

rey Undamped sxgt,em

e e — —— e — — —

FIGURE 3-7

(3 38) Response to resonant loading B = 1 for at-rest initial conditions.




®In the damped system, the envelope function
becomes as shown In Fig. 3.8.

(L728){exp(=éet) -1} (3.39)

Response ratio envelope
o
e

No. of cycles, Hz

2 4 6 8 10 12
| 1 1 I 1 I

0 4r 8m 12m 1671 207 24w 287

Duration of loading, @t

S|

FIGURE 3-8

Rate of buildup of resonant response from rest.



