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INTRODUCTION

@ Structural dynamics is basis for the analysis of
structures under non-static loads, that is, dynamic
loads.

®The structural dynamics is applied for analysis of
structures subjected to earthquake loads, wind loads,
vibration control, blasting loads.

®In particular, because earthquake loads control
construction of structures in earthquake prone
countries including Japan, structural dynamics is
essential for mitigating damage of structures and loss
of lives.

®In this lecture, basics of structural dynamics is
Introduced with emphasis on application to selsmlc
design of structures.



SCHEDULE

®1st: April 10 (Tue)
®2nd: April 17 (Tue)

@3rd

.Sth:
.6th:

®/th:

- April 24 (Tue)
@A4th:

May 1 (Tue)
May 8 (Tue)
May 15 (Tue)
May 22 (Tue)



®3th: May 29 (Tue)

®9th: June 5 (Tue) , Mid-term evaluation
®10th:

@11t
o012t
@13t

.

.

.

June 12 (Tue)
June 19(Tue)
June 26 (Tue)
July 3(Tue)

®14t: July 10(Tue)
®15™": July 24 (Tue)

®Final Exam: Scheduled on July 31(Tue)
All classes are provided at 13:20-14:50.
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CHAPTER 1 OVERVIEW OF
STRUCTURAL DYNAMICS

1.1 FUNDAMENTAL OBJECTIVE OF
STRUCTURAL DYNAMICS ANALYSIS

®Earthquake loading
®\\Vind loading
®@Bombing

®Vibration and noise pollution
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1.5 DIRECT EQUILIBRIUM USING
d’ALEMBERT's PRINCIPLE

®The equations of motion of any dynamic system
can be represented by Newton’s second law of
motion, which states that the rate of change of
momentum of any mass particle m is equal to the
force acting on it.

®The Newton’s second law of motion is expressed
mathematically by the differential equation as

d dv
——— — 1-3
p(t) dt(m dt) (1-3)

where, p(t) is the applied force vector and v(t) is

the position vector of particular mass m.
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® For most problems in structural dynamics, it may
be assumed that mass does not vary with time, In
which case Eq. (1.3) may be written

2

p(t) = m(:ljt;/ = mv(t) (1.33)

where the dots represent differentiation with
respect to time.

®Eg. (1.3a), indicating that force is equal to the

product of mass and acceleration, may be written
In the form

p(t)—mv(t) =0 (1.3b)

in which, the second term mv(t) is called the inertial
force ( ) resisting the acceleration of the mgss.



®The concept that a mass develops an inertia force
proportional to its acceleration and opposing is
known as d’Alembert’s principle ( ).

®The d’Alembert’s principle is a very convenient
concept in problems of structural dynamics because
It permits the equations of motion to be expressed
as equations of dynamic equilibrium.

®The force p(t) may be considered to include many
types of force acting on the mass such as

v Elastic constraints which oppose displacements
v'Viscous forces which resist velocities

v Independently defined external loads
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®Thus If an inertia force which resists
acceleration is introduced, the equation of motion
IS merely an expression of equilibration of all
forces acting on the mass.

®In many simple problems, the most direct and
convenient way of formulating the equations of
motion is by means of such direct equilibrium.
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