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INTRODUCTION

Structural dynamics is basis for the analysis of 
structures under non-static loads, that is, dynamic 
loads.

The structural dynamics is applied for analysis of 
structures subjected to earthquake loads, wind loads, 
vibration control, blasting loads.

In particular, because earthquake loads control 
construction of structures in earthquake prone 
countries including Japan, structural dynamics is 
essential for mitigating damage of structures and loss 
of lives.

In this lecture, basics of structural dynamics is 
introduced with emphasis on application to seismic 
design of structures.
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SCHEDULE

1st: April 10 (Tue)

2nd: April 17 (Tue)

3rd: April 24 (Tue)

4th: May 1 (Tue)

5th: May 8 (Tue)

6th: May 15 (Tue)

7th: May 22 (Tue)
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8th: May 29 (Tue)

9th: June 5 (Tue) , Mid-term evaluation

10th: June 12 (Tue)

11th: June 19(Tue)

12th: June 26 (Tue)

13th: July 3(Tue)

14th: July 10(Tue)

15th: July 24 (Tue)

Final Exam: Scheduled on July 31(Tue) 

All classes are provided at 13:20-14:50.
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TEXT

Dynamics of Structures
by 
Ray W. clough
and Joseph Penzien
University of California, 
Berkeley
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Revised version

Computers and Structures, Inc.
http://www.csiberkeley.com
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Structural Dynamics
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CHAPTER 1  OVERVIEW OF 
STRUCTURAL DYNAMICS

1.1 FUNDAMENTAL OBJECTIVE OF 
STRUCTURAL DYNAMICS ANALYSIS

Earthquake loading

Wind loading

Bombing

Vibration and noise pollution

….
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1.5 DIRECT EQUILIBRIUM USING 
d’ALEMBERT’s PRINCIPLE（ダランベールの
法則）

The equations of motion of any dynamic system 
can be represented by Newton’s second law of 
motion, which states that the rate of change of 
momentum of any mass particle m is equal to the 
force acting on it. 

The Newton’s second law of motion is expressed 
mathematically by the differential equation as

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dm

dt
dt vp )( (1-3)

where, p(t) is the applied force vector and v(t) is 
the position vector of particular mass m. 



14

For most problems in structural dynamics, it may 
be assumed that mass does not vary with time, in 
which case Eq. (1.3) may be written

)()( 2

2
tm

dt
dmt vvp &&== (1.3a)

where the dots represent differentiation with 
respect to time. 

Eq. (1.3a), indicating that force is equal to the 
product of mass and acceleration, may be written 
in the form

0)()( =− tmt vp && (1.3b)

in which, the second term         is called the inertial 
force (慣性力) resisting the acceleration of the mass.

)(tmv&&
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The concept that a mass develops an inertia force 
proportional to its acceleration and opposing is 
known as d’Alembert’s principle (ダランベールの法則).

The d’Alembert’s principle is a very convenient 
concept in problems of structural dynamics because 
it permits the equations of motion to be expressed 
as equations of dynamic equilibrium.  

The force p(t) may be considered to include many 
types of force acting on the mass such as

Elastic constraints which oppose displacements

Viscous forces which resist velocities

Independently defined external loads
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Thus if an inertia force which resists 
acceleration is introduced, the equation of motion 
is merely an expression of equilibration of all 
forces acting on the mass.

In many simple problems, the most direct and 
convenient way of formulating the equations of 
motion is by means of such direct equilibrium.


