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10. Method of Consistent Deformations

( )

10.1 Nature of Compatibility Methods

®The methods that are broadly classified as
compatibility methods are those In
which the key relationships used in the solution are
compatibility equations that are formulated through
the superposition ( ) of a set of partial
solutions, each of which satisfies the requirements of
equilibrium.

®Many methods can be classified as compatibility
methods. In this Chapter, we focus on the method of
consistent deformation ( ). 2



10.2 Redundancies: External versus Internal

)

®As described in Chapter 9, redundant forces are
those that can be removed from the structure without
Impairing the stable integrity ( ) of the structure.

®These redundant forces may be either external or

Internal. In the former case, the redundant forces (
) are reaction forces ( ), whereas in the

latter, the redundant forces are member forces (

).



10.3 Determination of Redundant Reactions

10.3.1 Single Redundant Reaction ( £

® The simple propped cantilevered beam (

) solution that was discussed in
Sections 9.1-9.3 was an application of the method of
consistent deformation.

® The structure of that example is shown in more
general sense in Fig. 10.1.



® The objective of

the analysis iIs to

determine the four M, =R, . G

independent RM=R3-€ N "

reaction ?R i j?; i

components, R,-R,, . y

and the internal Ra,

member forces ( R_G_QJ_I L T T e
) for member ab.

® The
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section 3.3 shows
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first order (1 tr. e
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Figure 10.1 Consistent deformation analysis of a statically indeterminate beam structure. (a) Statically
indeterminate structure. (b) Statically determinate primary structure. (c) Unit value of R,.



® Upon removal of R,
the statically :
determinate primary RM=R3—é o o o e e e e O L O
structure ( ) of Fig. :
10.1(b) remains. R, =R, t,-R

()
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®Since this structure is Reo
statically determinate, Rm—e -
the reactions R20-
R40can be determined.

R
-
i
L]
E
[} |
-
=]

(b)

®Corresponding to this

arrangement, there iIs a
displacement A, at the : o
point and in the direction “—é's— — 1

of the released i, B =1
redundant. @




®This displacement is, of
course, In violation of
the prescribed boundary
condition for point b of
the original structure,
which requires

that A =0.

® Thus, the solution of
the primary structure
must be altered to meet
the boundary condition.

® For this purpose,
iIntroduce a unit value of
the redundant reaction
(R,;=1) on the primary

structure as shown in Fig.

10.1 (c).
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® Here, the reactions R,;
— R4, result from a static M, =R,
analysis of the primary Rmzﬁa_é
structure.

®The displacement
corresponding to the
released redundant is
Identified as D,;, which is
the flexibility coefficient

(

) that expresses
the deflection at the point
and in the direction of R,
that i1s caused by a unit
value of R;.
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Fig. 10.1



® The deflection at the

point in the direction of M, =R,
the released redundant Rmzna_é
caused by the

b
11.—*4*‘1;1! 4,=0

. R

redundant reaction R, Is T . tr, =
identified as Aqr and is .
given by R_é;:;_}_; - 1 f
N % ““‘*-H_‘u Ry, =0
Ap; =DpiRy  (10.1)

(b)

® The displacement A1g
and A1r are combined to

-

give the final displacement

Al as R:“—é-i_'”iﬁﬂ _t_fn“

Alo T DllRl = Al — O 1321 Ry, =1

{c)

(10.2) Fig. 10.1 :
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® Solving Eq.(10.2) for
R,, we have

A1
Ri=——" (10.3)
D11
AlO + DllRl = Al =0
(10.2)

® In Fig. 10.1, all
displacements are
positive when upward.
Thus, Aqq Is actually
negative as shown in Fig.
10.1(b).
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AlO + DllRl = Al =0

(10.2)

® It should be noted
that Eqg. (10.2) is a
compatible equation
that has units of
displacement.

®@Since D11 has units of
displacement, the
quantity R1 is untitled.
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® Once R1 has been
determined, statics could
be applied to determine
the nonredundant
reactions.

®Alternatively, there is a
more general approach.
The superposition pattern
expressed in Eq. (10.2)
for displacement holds
for all other aspects of
the solution.

®Thus, to determine one
of the nonredundant
reactions R,, we have

Maz = Rﬂ

Ru.\‘ = R3 ‘G

Ry

RED (

(10.4)
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® Or, In a more general

form, If S Is taken as
any response quantity

of interest, such as a
reaction force or any

Internal force

component in member

as, then

S = SO -I-SlRl

(10.5)
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10.3.2 Two Redundant Reactions ( 2

® Consider next the continuous beam as shown In Fig.
10.2(a). This beam is twice statically indeterminate.

® One way to reduce the given structure to a statically
determinate primary structure is to remove the two
Interior reactions as shown in Fig. 10.2(b).

® The primary T i
structure can now be e . it
analyzed by the R I 1 | N

method of statics. n ;
®The displacement A1g ﬂ
and Apq can be B, | trrrrr

determined. | T _____________ ]

Fig. 10.2 =



®Because A1g and Apq are in violation of the boundary
condition of the original structure, it is necessary to
modify the solution of the primary structure until the
displacements at these points are compatible with the
prescribed boundary conditions.

® The required modification is accomplished by
iIntroducing unit values of the redundant reactions on

the primary structure | - d

and determining the - o 2
effects that these iR A e N
individual loading | T |
cases have on the
displacements where O e s e
compatibility is to be T St I
restored. fertest Ro

Fig. 10.2 =



® These unit load e ) b .
cases are shown in Fig. % " a 39*
10.2(c). They can be R’ I T
analyzed in
accordance with static
considerations. %I L *ﬁ;%
®Fach of these | e ]
displacements is T "
shown in Fig. 10.2(c)
as Dij . e . T ——
is the flexibility Y N %
coeﬁ‘l cient ( B R
) that
expresses the g
displacement at the ¢ | o
point in the direction of il Ll !

the redundant reaction

Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beam.
(b) Statically determinate primary structure. (c) Unit values of the redundant reactions.



® The total "?” %‘“ e %

displacements at the U e
points in the direction of
redundant reactions are

identified as Ajg and Ajyp = 5— — )
and are determined from b I
the superposition ( | o
).
A1R = D11R1 + DRy s T B
Azr =D21R1 + D2oRo

(10.6)

fe)

Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beam.
(b) Statically determinate primary structure. (c) Unit values of the redundant reactions.



® These displacements 'ﬁ"’” %“’ %’"’ %%
must be combined with I
AlO and AZO to yield

the desired
di§p_lacements of the %I L ”7—7%
original structures J 1

(refer to Fig. 10.2(a)). ®

A1 +D1iRi +DpRy = A1 s R -

AZO + D21R1 + D22 R2 = AZ R[: o J

(10.7) I o

® Eqg. (10.7) represents I 1 2
compatibility equations ' . ) RL
( ) - Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beam.

(b) Statically determinate primary structure. (c) Unit values of the redundant reactions.



® Eq. (10.7) can be ,_
written in matrix form Roms b T glc
as ! | Lot

=
=
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Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beat
(b) Statically determinate primary structure. () Unit values of the redundant reactions.



® In Eq.(10.8), the
IS

sguare matrix
the structural flexibility

matrix (
)
D1 Do |[Ri]  [A1-410
D21 D22 J(Ro) (A2 —Ang
(10.8)

® The solution of Eq.(10.8)
gives the magnitudes of
redundant reactions. These
reactions can be placed on
the original structure, and

the remaining reactions can

be determined from statics.
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Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beat
(b) Statically determinate primary structure. () Unit values of the redundant reactions.



® Or, as a general procedure, nes

the same superposition ( e l ;—;; — gﬂ rd

) shown in Eq. (10.7) . N

can be used for determining "' Tem T
any other response

guantities of interest ( —,@,l L ”J —

), such as LT 1

reaction, moment or shear. €
®If S is taken as such a e

response quantity ( B LT o

), then o ]

S = SO +S]_R1+82R2 ___________

(10.9) T me S

R R..
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Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beat
(b) Statically determinate primary structure. () Unit values of the redundant reactions.



® In Eq. (10.9), S, Is the
value of S on the primary
structure when the actual
loading of the given structure
Is applied, and S, is the value
of S on the primary structure
when a unit value of R; is
applied.

S = SO + S]_R]_ + SZRZ
(10.9)

® Since superposition is valid
only for linear elastic
structures, the method of
consistent deformations can
be applied only to linear
elastic structures.

Figure 10.2 Statically indeterminate continuous beam. (a) Statically indeterminate beat
(b) Statically determinate primary structure. () Unit values of the redundant reactions.



10.4 Application of the Method of Consistent
Deformations

Example 10.1: Determine the reactions, and construct

the moment diagram for the frame structure given. The

quantity El is the same for each member.

Structure classification

The structure is statically
Indeterminate to the first
order.




Primary structure and loadings

® Select R, as the redundant
reaction R,, which produces a
simple cantilever-type system
as the primary structure.

-150

1R11 '—'1

Unit value
of R,

Actual

loading
- /
-250
M, e 1R31 =1(-)
Ry = 250 (-) R, <10 >

Reactions in kips ; moments in kip-ft



Displacement calculation

® The moment-area method ( ) Is used
because it is especially useful to a cantilevered-type
structure.

25



Moment-area method ( , Refer to 8.4)

6’BA = | E:;/II dx j de

® The angle change between points A and B on the
deflected structure, or the slope at B relative to A, is
given by the area under the M/EI diagram between
these points (First Moment-area method 1
)

® The deflection at B on the deflected structure with
respect to a line drawn tangent to point A on the
structure is given by the static moment of the area
under the M/EIl diagram between A and B taken about
an axis through point B (Second Moment-area method,

2 )
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Figure 8.6 Development of moment-area theorems.




The displacement A1g
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The Flexibility Coefficient Djq

10 100 .o
% = 6 (EI)X El

A = 10 10x6.67 =333 3
2El El

100 333.5 13335

AlO =——x10+ ft3k
El El El

Unit value

+10f of R,
B




Determination of Reactions
® The redundant reaction R, Is determined by
Imposing displacement compatibility at point c
through the principle of superposition (

)
A1p+D11R =A1 =0 (<-10.2)
A
Rl B _#O Mo 1=
11
23124 =130
= -150 10
l, 333 : 5 o —
=17.34 oo

M, -250

/\ tRaD = 30

R,o =250 () R, =10
Reactions in kips ; moments in kip-ft



® The same superposition can be used to determine
the remaining reactions

Rg = Rqo + RpaR1 (<-10.4)

A1g+ DRy =A1 =0 (<-10.2)
Ry =—-10+(0x17.34) = —10kips

Rq =30+ (-1x17.34) =12.66kKips

Ry =—250+(10x17.34) = —76.6Kips

30" +10
10 b yd ¢
= R]
Actual
loading
M, =R X_ 14 M, 250 "
R e R, =250 (-) a1 =
- 10 - Reactions in kips ; moments in kip-ft




Final Moment

® Again, superposition provides the final moments at
any point on the structure

M =|\/|0-I—|\/|1R1
!

Moment for R;=1 on primary structure

Moment for actual loading on primary structure

30" +10

Actual Unit value
loading of R,
20—10(_’) ] R21=O
il ; ’
M
\ : /\ R31 = 1 (")
ay = 3 le— 5 — Ryg = 250 (-) Ry =10
- 10 - Reactions in kips ; moments in kip-ft
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