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10. Method of Consistent Deformations 
(変形法)

10.1 Nature of Compatibility Methods

The methods that are broadly classified as 
compatibility methods （変位適合法） are those in 
which the key relationships used in the solution are 
compatibility equations that are formulated through 
the superposition (重ね合わせ) of a set of partial 
solutions, each of which satisfies the requirements of 
equilibrium.

Many methods can be classified as compatibility 
methods. In this Chapter, we focus on the method of 
consistent deformation (変形法).
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10.2 Redundancies: External versus Internal （外部
不静定 対 内部不静定)

As described in Chapter 9, redundant forces are 
those that can be removed from the structure without 
impairing the stable integrity (安定性) of the structure. 

These redundant forces may be either external or 
internal. In the former case, the redundant forces (不
静定力) are reaction forces (反力), whereas in the 
latter, the redundant forces are member forces (断面
力). 
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10.3 Determination of Redundant Reactions

10.3.1 Single Redundant Reaction (余剰反力が1つの場合)

The simple propped cantilevered beam (先端で支持
された片持ちばり) solution that was discussed in 
Sections 9.1-9.3 was an application of the method of 
consistent deformation. 

The  structure of that example is shown in more 
general sense in Fig. 10.1.
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The objective of 
the analysis is to 
determine the four 
independent 
reaction 
components, R1-R4, 
and the internal 
member forces (断面
力) for member ab.

The 
consideratioins of 
section 3.3 shows 
that the structure is 
statically 
indeterminate to the 
first order (1次不静定
構造物）.
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Upon removal of R1, 
the statically 
determinate primary 
structure (主構造) of Fig. 
10.1(b) remains. 

Since this structure is 
statically determinate, 
the reactions R20-
R40can be determined. 

Corresponding to this 
arrangement, there is a 
displacement        at the 
point and in the direction 
of the released 
redundant.

10∆
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This displacement is, of 
course, in violation of 
the prescribed boundary 
condition for point b of 
the original structure, 
which requires 
that           . 01 =∆

Thus, the solution of 
the primary structure 
must be altered to meet 
the boundary condition.

For this purpose, 
introduce a unit value of 
the redundant reaction 
(R11=1) on the primary 
structure as shown in Fig. 
10.1 (c).
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Here, the reactions R21
– R41 result from a static 
analysis of the primary 
structure. 

The displacement 
corresponding to the 
released redundant is 
identified as D11, which is 
the flexibility coefficient 
(たわみ性係数、フレキシビリ
ティー係数) that expresses 
the deflection at the point 
and in the direction of R1
that is caused by a unit 
value of R1.
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The deflection at the 
point in the direction of 
the released redundant 
caused by the 
redundant reaction R1 is 
identified as         and is 
given by

R1∆

1111 RDR =∆ (10.1)

The displacement        
and          are combined to 
give the final displacement             

as    

10∆
R1∆

1∆

0111110 =∆=+∆ RD

(10.2)
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Solving Eq.(10.2) for 
R1, we have

0111110 =∆=+∆ RD

(10.2)

11
10

1 D
R ∆−= (10.3)

In Fig. 10.1, all 
displacements are 
positive when upward. 
Thus,        is actually 
negative as shown in Fig. 
10.1(b).

10∆
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0111110 =∆=+∆ RD

(10.2)

Fig. 10.1

It should be noted 
that Eq. (10.2) is a 
compatible equation 
that has units of 
displacement. 

Since D11 has units of 
displacement, the 
quantity R1 is untitled. 
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Once R1 has been 
determined, statics could 
be applied to determine 
the nonredundant
reactions.

Alternatively, there is a 
more general approach. 
The superposition pattern 
expressed in Eq. (10.2) 
for displacement holds 
for all other aspects of 
the solution. 

Thus, to determine one 
of the nonredundant
reactions Rq, we have

110 RRRR qqq += (10.4)



13Fig. 10.1

Or, in a more general 
form, if S is taken as 
any response quantity 
of interest, such as a 
reaction force or any 
internal force 
component in member 
as, then

110 RSSS += (10.5)
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10.3.2 Two Redundant Reactions (余剰反力が2つある場合)

Consider next the continuous beam as shown in Fig. 
10.2(a). This beam is twice statically indeterminate. 

One way to reduce the given structure to a statically 
determinate primary structure is to remove the two 
interior reactions as shown in Fig. 10.2(b).

Fig. 10.2

The primary 
structure can now be 
analyzed by the 
method of statics.

The displacement      
and       can be 
determined.

10∆
20∆
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Because        and       are in violation of the boundary 
condition of the original structure, it is necessary to 
modify the solution of the primary structure until the 
displacements at these points are compatible with the 
prescribed boundary conditions.             

10∆ 20∆

Fig. 10.2

The required modification is accomplished by 
introducing unit values of the redundant reactions on 
the primary structure 

and determining the 
effects that these 
individual loading 
cases have on the 
displacements where 
compatibility is to be 
restored.
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These unit load 
cases are shown in Fig. 
10.2(c). They can be 
analyzed in 
accordance with static 
considerations. 

Each of these 
displacements is 
shown in Fig. 10.2(c) 
as         .ijD

ijD is the flexibility 
coefficient (フレキシブル
係数、柔性係数) that 
expresses the 
displacement at the 
point in the direction of 
the redundant reaction
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The total 
displacements at the 
points in the direction of 
redundant reactions are 
identified as       and     
and are determined from 
the superposition (重ね合
わせ).  

R1∆ R2∆

2121111 RDRDR +=∆

2221212 RDRDR +=∆

(10.6)
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These displacements 
must be combined with         

and       to yield 
the desired 
displacements of the 
original structures 
(refer to Fig. 10.2(a)).   

10∆ 20∆

121211110 ∆=++∆ RDRD

222212120 ∆=++∆ RDRD

(10.7)

Eq. (10.7) represents 
compatibility equations 
(変位適合条件). 
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Eq. (10.7) can be 
written in matrix form 
（マトリックス表示） as

⎭
⎬
⎫

⎩
⎨
⎧

∆−∆
∆−∆

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥⎦

⎤
⎢⎣

⎡

202

101

2

1

2221

1211
R
R

DD
DD

(10.8)

121211110 ∆=++∆ RDRD

222212120 ∆=++∆ RDRD

(10.7)
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In Eq.(10.8), the 
square matrix       is 
the structural flexibility 
matrix (フレキシビリティ行
列、柔性行列)

⎭
⎬
⎫

⎩
⎨
⎧

∆−∆
∆−∆

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥⎦

⎤
⎢⎣

⎡

202

101

2

1

2221

1211
R
R

DD
DD

(10.8)

The solution of Eq.(10.8) 
gives the magnitudes of 
redundant reactions. These 
reactions can be placed on 
the original structure, and 
the remaining reactions can 
be determined from statics.
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Or, as a general procedure, 
the same superposition (重ね
合わせ法) shown in Eq. (10.7) 
can be used for determining 
any other response 
quantities of interest (関心の
あるその他の諸量), such as 
reaction, moment or shear. 

If S is taken as such a 
response quantity (このような
諸量の一つ), then

22110 RSRSSS ++=

(10.9)
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In Eq. (10.9), S0 is the 
value of S on the primary 
structure when the actual 
loading of the given structure 
is applied, and Si is the value 
of S on the primary structure 
when a unit value of Ri is 
applied.

22110 RSRSSS ++=

(10.9)

Since superposition is valid 
only for linear elastic 
structures, the method of 
consistent deformations can 
be applied only to linear 
elastic structures.
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10.4 Application of the Method of Consistent 
Deformations

Example 10.1: Determine the reactions, and construct 
the moment diagram for the frame structure given. The 
quantity EI is the same for each member.

Structure classification

The structure is statically 
indeterminate to the first 
order.
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Primary structure and loadings

Select Rcy as the redundant 
reaction R1, which produces a 
simple cantilever-type system 
as the primary structure.
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Displacement calculation

The moment-area method (モーメント面積法) is used 
because it is especially useful to a cantilevered-type 
structure.
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Moment-area method (モーメント面積法, Refer to 8.4)

∫= B
A

A
B dx

EI
Mθ ∫=∆ B

A
A
B dxx

EI
M

The angle change between points A and B on the 
deflected structure, or the slope at B relative to A, is 
given by the area under the M/EI diagram between 
these points (First Moment-area method、第1モーメント面
積法)

The deflection at B on the deflected structure with 
respect to a line drawn tangent to point A on the 
structure is given by the static moment of the area 
under the M/EI diagram between A and B taken about 
an axis through point B (Second Moment-area method, 
第2モーメント面積法)
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∫= B
A

A
B dx

EI
Mθ

∫=∆ B
A

A
B dxx

EI
M

(8.29)

(8.33)
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The displacement 10∆

kft
EIEI

a
bb

2200010
2

150250 =×⎟
⎠
⎞

⎜
⎝
⎛ +==θθ

kft
EIEI

b
c

3312433.85
2
150 =××=∆

kft
EIEIEI

3
10

231243124102000 =+×=∆
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The Flexibility Coefficient 11D

kft
EIEI

a
bb

21001010 =×⎟
⎠
⎞

⎜
⎝
⎛== θθ

kft
EIEI

b
c

35.33367.610
2
10 =××=∆

kft
EIEIEI

3
10

5.13335.33310100 =+×=∆
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Determination of Reactions

The redundant reaction R1 is determined by 
imposing displacement compatibility at point c 
through the principle of superposition (重ね合わせの原
理)

11
10

1 D
R ∆−=

5.333,1
124,23=

34.17=

0111110 =∆=+∆ RD (<-10.2)



31

The same superposition can be used to determine 
the remaining reactions

110 RRRR qqq += (<-10.4)

0111110 =∆=+∆ RD (<-10.2)

kipsR 10)34.170(102 −=×+−=
kipsR 66.12)34.171(303 =×−+=

kipsR 6.76)34.1710(2504 −=×+−=
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Final Moment

110 RMMM +=

Moment for R1=1 on primary structure

Moment for actual loading on primary structure

Again, superposition provides the final moments at 
any point on the structure
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