第3回 ラグランジュ方程式

無機材料工学科 准教授 安田公一

1. はじめに

前回の講義でラグランジュ方程式の導出過程を説明したので、今回の講義では、その具体的な使い方を示すことにする. なお、ラグランジュ方程式の導出の仕方には、変分法を用いたものもあるので、興味のある学生は成書で調べてみるとよい. 科学における最も典型的な考え方を学こともできよう.

2.2 重振り子問題

図 1 の二重振り子の運動方程式を求めたい. 2 つの質点の質量を m_1 , m_2 , 振り子の腕の長さを l_1 , l_2 , 鉛直線からの角度を θ_1 , θ_2 とする. 振り子の支点を座標の原点とし、鉛直下方を x 軸、水平方向を y 軸とする.

(解答例)質点 m_1 のデカルト座標を (x_1,y_1) とすると、 (l_i,θ_i) との関係は、

$$\begin{cases} x_1 = \ell_1 \cos \theta_1 & (1) \\ y_1 = \ell_1 \sin \theta_1 & (2) \end{cases}$$

となる. 質点 m_2 のデカルト座標を (x_2,y_2) とすると. (l_i,θ_i) との関係は.

$$\begin{cases} x_2 = \ell_1 \cos \theta_1 + \ell_2 \cos \theta_2 & (3) \\ y_2 = \ell_1 \sin \theta_1 + \ell_2 \sin \theta_2 & (4) \end{cases}$$

となる.

(以下省略)

<演習1>

(以下省略)

3. 機械・電気連成問題

実は、ラグランジュ方程式は力学だけでなく、電気回路についても適用できる.物理量間の対応関係は、以下の通りである.これを用いると、電気回路でモーターを回し、ファンで風を送ると言った電機制御問題(連成問題)を解くことができる.

(以下省略)

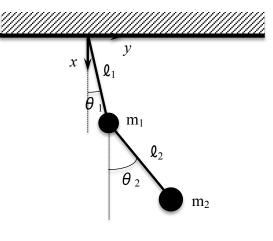


図1 2重振り子問題