Properties of SPNE (Prop. 9.B.3)

- <u>Prop. 9.B.3</u> : Γ_E : an extensive form game, S : a subgame
- σ^{s} : an SPNE of subgame S
- Γ_{E}^{*} : the reduced game replacing the subgame S by a terminal node with payoff determined by σ^{S}
- (1) σ : an SPNE of Γ_E s.t. restriction of σ to S is σ^S .
 - σ^{-S} , the restriction of σ to outside $S \to \sigma^{-S}$ is an SPNE of Γ_{E}^{A}
- (2) σ^{\wedge} : an SPNE of $\Gamma^{\wedge}_{E} \rightarrow (\sigma^{\wedge}, \sigma^{S})$ is an SPNE of Γ_{E}

Proof of Prop. 9.B.3

(1) σ : an SPNE of $\Gamma_E = \sigma^S$: restriction of σ to S σ^{-S} : restriction of σ to outside S $\rightarrow \sigma^{-S}$ is an SPNE of Γ^{\wedge}_E

<u>Pf</u>: Suppose σ^{-S} is not an SPNE of Γ_{E}^{A} . Then \exists a subgame T of Γ_{E}^{A} s.t. σ^{T} is <u>not</u> a Nash eq. in Γ_{E}^{A} . \exists i who can increase his payoff by deviating from σ^{T} in Γ_{E}^{A} . i can increase his payoff in Γ_{E} by the same deviation.

Proof of Prop. 9.B.3

(2) σ^{\wedge} : an SPNE of $\Gamma^{\wedge}_{E} \rightarrow (\sigma^{\wedge}, \sigma^{S})$ is and SPNE of Γ_{E}

<u>Pf</u>: Let $\sigma' = (\sigma^{\Lambda}, \sigma^{S})$. Take any subgame T. If $T \subseteq S$ or $T \subseteq \neg S$, then σ'^{T} is a Nash eq. of T.

If not, T contains S.

Suppose $\exists i$ who can gain more by deviating from σ'_i . Since σ^s is an SPNE of S, i changes his choice outside S. Then i can gain more also in Γ^{A}_{E} . C! Q.E.D.

Generalized Backward Induction

- 1 Start at the end of the game tree. Identify Nash eq. in each of the final subgames.
- 2 Select one Nash eq. in each of the final subgames, and derive the reduced extensive form game by replacing each subgame by a terminal node with payoffs of the selected Nash eq.
- 3 Repeat this procedure until every move in the original extensive form game is determined.

Example 9.B.4

Nash eq. (La, Sm), (Sm, La)

Example 9.B.4 (Ex. 9.B.6) Mixed strategy Nash eq. in the subgame

		Ι	
		Sm	La
E	Sm	-6, -6	<u>-1, 1</u>
	La	<u>1</u> , <u>-1</u>	-3, -3

Nash eq. (La, Sm), (Sm, La)

Mixed strategy Nash eq. ?

Prop. 9.B.4

 $\begin{array}{l} \underline{\operatorname{Prop.} 9.B.4}: \ \Gamma^t_E: \text{simultaneous move game, } t=1,\,2,\,\ldots\,,T.\\ \Gamma_E: \text{successive play of } \Gamma^t_E\\ \text{Each player's payoff} = \text{sum of his payoffs in T periods}\\ \text{Each player knows others' choices just after each game is played.}\\ \text{If } \exists \text{ a unique Nash equilibrium } \sigma^t \text{ in } \Gamma^t_E,\\ \text{ then there is a unique SPNE in } \Gamma_E\\ \text{ in which each player i plays } \sigma^t_i \text{ in } t=1,\,2,\,\ldots\,,T. \end{array}$

<u>Pf:</u> Induction on T. If T = 1, clear.

Suppose the claim is true for all $T \le n-1$.

Show the claim holds when T = n.

After the first period is over, we have n-1 period game.

Thus from the induction hypothesis, the conclusion easily follows.

Centipede Game

SPNE (S, S, ..., S), (S, S, ..., S)

Assignments

Problem Set 8 (due July 5) Exercises (pp.301-305) 9.B.9, 9.B.10

Reading Assignment:

Text, Chapter 9, pp.282-287