Trembling-Hand Perfect Equilirium

Figure 8.F. 1

Player 1: U w-dom D, Player 2: L w-dom R
$\rightarrow(\mathrm{D}, \mathrm{R})$ is a Nash eq. ???
((U, L) is also a Nash eq.)

Perturbed Game

$$
\begin{aligned}
\Gamma_{\varepsilon} & =\left[\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\Delta_{\varepsilon} \mathrm{S}_{\mathrm{i}}\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right] \text { is a perturbed game of } \\
\Gamma_{\mathrm{N}} & =\left[\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\Delta \mathrm{S}_{\mathrm{i}}\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right] \text { if } \\
& \forall \mathrm{i} \in \mathrm{~N}, \forall \mathrm{~s}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{i}} \quad \exists \varepsilon_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right) \in(0,1) \text { with } \Sigma_{\text {si } \in \mathrm{Si}} \varepsilon_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right)<1 \text { s.t. } \\
& \Delta_{\varepsilon}\left(\mathrm{S}_{\mathrm{i}}\right)=\left\{\sigma_{\mathrm{i}} \mid \sigma_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right) \geq \varepsilon_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right) \forall \mathrm{s}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{i}} \text { and } \Sigma_{\text {si } \in \mathrm{Si}} \sigma_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right)=1\right\}
\end{aligned}
$$

Definition 8.F.1: A Nash eq. σ of $\Gamma_{N}=\left[N=\{0,1, \ldots, I\},\left\{\Delta S_{i}\right\},\left\{u_{i}\right\}\right]$ is trembling-hand perfect if \exists a sequence of perturbed games $\left\{\Gamma_{\varepsilon k}\right\}_{k=1}^{\infty}$ converging to Γ_{N} (i.e., $\varepsilon^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right) \rightarrow 0$ for all i and $\mathrm{s}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{i}}$) for which \exists some sequence of Nash eq. $\left\{\sigma^{\mathrm{k}}\right\}_{\mathrm{k}=1}{ }^{\infty}$ that converges to σ.

Trembling-Hand Perfect Nash Equilibrium

Proposition 8.F.1: A Nash eq. of $\Gamma_{N}=\left[\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\Delta \mathrm{S}_{\mathrm{i}}\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right]$ is trembling-hand perfect iff \exists a sequence of totally mixed strategies $\left\{\sigma^{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ such that $\lim _{\mathrm{k} \rightarrow \infty} \sigma^{\mathrm{k}}=\sigma$ and σ_{i} is a best response to every element of sequence $\left\{\sigma^{\mathrm{k}}{ }_{-\mathrm{i}}\right\}_{\mathrm{k}=1}{ }^{\infty}$ for all $\mathrm{i}=1, \ldots, \mathrm{I}$.

Totally mixed strategy:
every pure strategy is played with positive probability

Proposition 8.F.2: If $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is a trembling-hand perfect Nash eq., then σ_{i} is not a weakly dominated strategy for any $\mathrm{i}=1, \ldots$, I. Hence, in any trembling-hand perfect Nash eq., no weakly dominated pure strategy can be played with positive probability.

Trembling-Hand Perfect Nash Equilibrium

Proposition 8.F.2: If $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is a trembling-hand perfect Nash eq., then σ_{i} is not a weakly dominated strategy for any $\mathrm{i}=1, \ldots$, I. Hence, in any trembling-hand perfect Nash eq., no weakly dominated pure strategy can be played with positive probability.
$\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$ is a T-HPNE $\rightarrow \sigma_{\mathrm{i}}$ is not weakly dominated
Any NE not having a weakly dominated strategy \rightarrow T-HPNE ?
true for two-person games; not true in general
Existence of T-HPNE:
Every game $\Gamma_{N}=\left[N=\{0,1, \ldots, I\},\left\{\Delta S_{i}\right\},\left\{u_{i}\right\}\right]$ with finite S_{1}, \ldots, S_{I} has s T-HPNE.

Existence of Nash Equilibrium

Lemma 8.AA.1: If $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{I}}$ are nonempty, compact and convex, and u_{i} is continuous in $\left(s_{1}, \ldots, s_{\mathrm{I}}\right)$ and quasi-concave in s_{i}, then player i's best-response correspondence b_{i} is nonempty, convexvalued, and upper hemi-continuous.

Pf: $b_{i}\left(s_{-i}\right)=\left\{s_{i} \in S_{i} \mid u_{i}\left(s_{i}, s_{-i}\right)=\max \left\{u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \mid s_{i}^{\prime} \in S_{i}\right\}\right.$
Non-emptiness: S_{i} is compact and u_{i} is continuous; so $\mathrm{b}_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}}\right)$ is nonempty.
Convex-valued: Pick any $s_{i}, t_{i} \in b_{i}\left(s_{-i}\right)$ and any $\alpha \in[0,1]$. Then $u_{i}\left(s_{i}, s_{-i}\right)=u_{i}\left(t_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right) \forall s_{i}^{\prime} \in S_{i}$.
By the quasi-concavity of u_{i},
$\mathrm{u}_{\mathrm{i}}\left(\alpha \mathrm{s}_{\mathrm{i}}+(1-\alpha) \mathrm{t}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right) \geq \min \left(\mathrm{u}_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right), \mathrm{u}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right)\right) \geq \mathrm{u}_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right) \forall \mathrm{s}_{\mathrm{i}}^{\prime} \in \mathrm{S}_{\mathrm{i}}$

Existence of Nash Equilibrium

Lemma 8.AA.1: If $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{I}}$ are nonempty, compact and convex, and u_{i} is continuous in ($s_{1}, \ldots, s_{\mathrm{I}}$) and quasi-concave in s_{i}, then player i's best-response correspondence b_{i} is nonempty, convexvalued, and upper hemi-continuous.

Pf: $b_{i}\left(s_{-i}\right)=\left\{s_{i} \in S_{i} \mid u_{i}\left(s_{i}, s_{-i}\right)=\max \left\{u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \mid s_{i}^{\prime} \in S_{i}\right\}\right.$ uhc: Suffice to show that for any sequence $\left(s_{i}{ }^{\mathrm{n}}, \mathrm{s}^{\mathrm{n}_{\mathrm{i}}}\right) \rightarrow\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right)$ with $\mathrm{s}_{\mathrm{i}}^{\mathrm{n}} \in \mathrm{b}_{\mathrm{i}}\left(\mathrm{s}^{\mathrm{n}}{ }_{\mathrm{i}}\right) \forall \mathrm{n}=1,2, \ldots, \mathrm{~s}_{\mathrm{i}} \in \mathrm{b}_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}}\right)$.
Since $s_{i}^{n} \in b_{i}\left(s^{n}{ }_{-i}\right), u_{i}\left(s_{i}^{n}, s^{n_{-}}\right) \geq u_{i}\left(s^{\prime}, s^{n}{ }_{-j}\right) \forall s^{\prime}{ }_{i} \in S_{i}$. Thus by the continuity of u_{i}, we have $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \forall s_{i}^{\prime} \in S_{i}$.

Existence of Nash Equilibrium

Proposition 8.D.3: A Nash equilibrium of
$\Gamma_{N}=\left[N=\{0,1, \ldots, I\},\left\{S_{i}\right\},\left\{u_{i}\right\}\right]$ exists if for all $i=1, \ldots, I$,
(i) S_{i} is a nonempty, convex, and compact subset of some Euclidean space $\mathfrak{R}^{\mathrm{M}}$.
(ii) u_{i} is continuous in $\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right)$, and quasi-concave in s_{i}.

Pf: Define b: $\mathrm{S}\left(=\mathrm{S}_{1} \times \ldots \times \mathrm{S}_{\mathrm{I}}\right) \rightarrow 2^{\mathrm{S}}$ by $\mathrm{b}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right)=\mathrm{b}_{1}\left(\mathrm{~s}_{-1}\right) \times \ldots \times \mathrm{b}_{\mathrm{I}}\left(\mathrm{s}_{-\mathrm{I}}\right)$. S is nonempty, convex, and compact. From Lemma 8.AA.1, $\mathrm{b}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right)$ is a nonempty, convex-valued, and uhc correspondence. Hence by the Kakutani fixed point theorem, there exists s $\in S$ such that $\mathrm{s} \in \mathrm{b}(\mathrm{s})$. Therefore $\mathrm{s}_{\mathrm{i}} \in \mathrm{b}_{\mathrm{i}}\left(\mathrm{s}_{-\mathrm{i}}\right) \forall \mathrm{i}=1, \ldots, \mathrm{I}$ which shows that $\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right)$ is a Nash eq.

Existence of Nash Equilibrium

Proposition 8.D.2: Every game $\Gamma_{N}=\left[\mathrm{N}=\{1, \ldots, \mathrm{I}\},\left\{\Delta\left(\mathrm{S}_{\mathrm{i}}\right)\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right]$ in which $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{I}}$ are finite sets has a mixed strategy Nash eq.

Pf: $\Delta\left(S_{\mathrm{i}}\right)$ and expected payoff functions satisfy the assumptions of Proposition 8.D.3.

Assignments

Problem Set 6 (due June 7)
 Exercises (pp.262-266): 8.F. 2

Reading Assignment:
Text, Chapter 9, pp.267-276

