
Nash equilibrium 

Definition 8.D.1: (Nash equilibrium) 
s = (s1, … , sI) is a Nash equilibrium  
  in ΓΝ  = [N={0,1,…,I}, {Si}, {ui}] 

 if  ∀ i= 1, … ,I,  ui(si, s-i) ≥ ui(s’i, s-i) ∀ s’i ∈ Si. 

Note:  Nash eq. → each player’s strategy is a best response to 
   the strategies actually played by her rivals  
 Rationalizable strategies  
   → best response to some justified strategies of the rivals 



Nash equilibrium 

Example 8.D.1: l m r 

U 5, 3 0, 4 3, 5 

M 4, 0 5, 5 4, 0 

D 3, 5 0, 4 5, 3 

_  denotes a best response 
(M, m) is the unique Nash eq. 

Example 8.D.2: 
b1 b2 b3 b4 

a1 0, 7 2, 5 7, 0   0, 1 
a2 5, 2 3, 3 5, 2   0, 1 
a3 7, 0 2, 5 0, 7   0, 1 
a4 0, 0 0, -2 0, 0 10, -1 

(a2, b2) is the unique Nash eq. 
 
rationalizable strategies  → 
 {a1, a2, a3}  for 1,   
 {b1, b2, b3}  for 2 

Note:  Every strategy in Nash eq.  → rationalizable 



Nash equilibrium 

Example 8.D.3: E C 

E 100, 100      0, 0 

C     0, 0 100, 100 

_  denotes a best response 
(E, E), (C, C) are Nash eq. 

Best-response correspondence 
bi :  S-i → Si 

 bi(s-i) = {si ∈ Si | ui(si, s-i) ≥ ui(s’i, s-i)  ∀ s’i ∈ Si} 

Nash eq. theory says nothing which eq. we should expect. 

s = (s1, … , sI) is a Nash equilibrium  
 in ΓΝ  = [N={0,1,…,I},{Si}, {ui}] 

  iff    si ∈ bi(s-i)  ∀ i= 1, … ,I  



Nash equilibrium － Discussion 

Why should we concern ourselves with the concept of Nash eq. ? 
How do players reach a Nash eq. ? 

1.  Nash eq. as a consequence of rational inference 
  2.  Nash eq. as a necessary condition  
  if there is a unique predicted outcome 
  3.  Focal points 
  4.  Nash eq. as a self-enforcing agreement 
  5.  Nash eq. as a stable social convention 



Mixed Strategy Nash equilibrium 

   H     T 

H -1, +1   +1, -1 

T +1, -1  -1, +1 

Example 8.D.4 : 
  ((1/2, 1/2), (1/2, 1/2)) is a unique Nash eq. 
  1’s payoff:   H  -1×1/2 + 1×1/2 = 0 
                       T  1×1/2 + (-1)×1/2 = 0 
  same for 2 

Definition 8.D.1:  
σ = (σ 1, … , σ I) is a Nash equilibrium  
 in ΓΝ  = [N={0,1,…,I}, {∆(Si)}, {ui}] 

 if  ∀ i= 1, … ,I,  ui(σ i, σ -i) ≥ ui(σ’i, σ -i) ∀ σ’ i ∈ ∆ (Si). 



Mixed Strategy Nash equilibrium 

Pf : →)  First show that ∀ i= 1, … ,I 
 ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+

i, ∀ s’ i ∈ Si 
Suppose not, i.e., ∃ i, si ∈ S+

i, s’i ∈ Si   s.t.  ui(s’i, σ-i) > ui(si, σ-i).  
Let σ’i be s.t. 
 σ’i(s”i) = σi(s”i)             for  s”i  ≠  si, s’i  
             = σi(s’i) + σi(si) for  s”i = s’i 

                  =  0                    for  s”i = si 
Then ui(σ’i, σ-i) > ui(σi, σ-i), contradicting that σ  is a Nash eq.  

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob. 

 in  σ = (σ 1, … , σ I).   σ  is a Nash eq. in  
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]   iff ∀ i= 1, … ,I,  
 (i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+

i 

 (ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i 



Mixed Strategy Nash equilibrium 

Pf : →)  Next show that ∀ i= 1, … ,I 

 ui(si, σ-i) = ui(s’i, σ-i)  ∀ si , s’i ∈ S+
i,  

This is clear from the fact shown above: 

 ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∈ Si 

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob. 

 in  σ = (σ 1, … , σ I).   σ  is a Nash eq. in  
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]   iff ∀ i= 1, … ,I,  
 (i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+

i 

 (ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i 



Mixed Strategy Nash equilibrium 

Pf : ←)  Suppose that σ  is not a Nash eq. .  
Then ∃ i, σ’i ∈ ∆(Si)  s.t.  ui (σ’i, σ-i) > ui (σi, σ-i).  
Then ∃ s’i ∈ Si  s.t.  ui (s’i, σ-i) > ui (σi, σ-i)  with  σ’i(s’i) > 0.  
From (i),  ui(si, σ-i) = ui(σi, σ-i) for all si ∈ S+

i.  
Thus s’i ∉S+

i,  contradicting (ii).  

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob. 

 in  σ = (σ 1, … , σ I). σ  is a Nash eq. in  
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]  iff    ∀ i= 1, … ,I,      
              (i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+

i 

                     (ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i 

Note:  To see a Nash eq. or not,  
 it suffices to check deviations to pure strategies. 



Mixed Strategy Nash equilibrium 

Pf :   ←)  clear. 

→)  Since  s  is a Nash eq. of ΓN = [N={0,1,…,I}, {Si}, {ui}], 

 ∀ i= 1, … ,I   ui(si, s-i) ≥ ui(s’i, s-i)   ∀ s’ i ∉ S+
i  

Thus (i), (ii) in Proposition 8.D.1 trivially hold since S+
i = {si} 

Thus by Prop.8.D.1, 

 s is a Nash eq. of  Γ’N = [N={0,1,…,I,} {∆(Si)}, {ui}]. 

Corollary 8.D.1: 
s = (s1, … , sI) is a Nash eq. of   ΓN = [N={0,1,…,I}, {Si}, {ui}]  
iff  it  is a Nash eq. of Γ’N = [N={0,1,…,I,} {∆(Si)}, {ui}] 



Mixed Strategy Nash equilibrium 

Example 8.D.5: 

E C 

E 1000, 1000      0, 0 

C       0, 0 100, 100 

S’s mixed strategy: (σs, 1-σs) 

T:  play E  → 1000σs 

        play C   → 100(1-σs) 

Similarly, T’s strategy (1/11, 10/11) 

S 

T 

Suppose T’s mixed strategy (σT, 1-σT) satisfies 0 < σT < 1. 
 Then S+

T={E,C}. 
Prop. 8.D.1  → 1000σs=100(1-σs)   
         → σs = 1/11  → S’s mixed strategy (1/11, 10/11) 

Nash eq.  ((1/11, 10/11), (1/11, 10/11)) 



Mixed Strategy in Nash Equilibria ??? 

What is a mixed strategy in Nash equilibria? 
 It just makes the rival indifferent over his strategies  
 (The player has no preference over the probabilities.) 

Is a mixed strategy useful ? 
1 Players have a pure strategy that gives the same payoff. 
  → why randomize them ? 
  → Players may not actually randomize; but they make 
    definite choices that are affected by signals. 

2 Stability of mixed strategy Nash eq. 
 players do not have an incentive to use the exact probability 
  → may not arise as a social convention,   
   but as a self-enforcing agreement   



Correlated Strategies 

Correlated equilibrium 

Example 8.D.5: 
       E      C 

E 1000, 1000      0, 0 

C       0, 0 100, 100 

Public signal θ ∈ [0,1] 
θ ≥ 1/2   → both play E  
θ < 1/2   → both play C 

This is equilibrium. 
 If T (S) follows, then S (T) has no incentive to deviate.  

S 

T 



Existence of  Nash equilibrium 

Proposition 8.D.2: 
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}] in which S1, … , SI have a finite 
number of elements has a mixed strategy Nash eq. 

Proposition 8.D.3: 
A Nash eq. exists in ΓN = [N={0,1,…,I}, {Si}, {ui}]  if  ∀i=1, … , I  
(i)  Si is a nonempty, convex, and compact subset of ℜm,  and  

(ii) ui(s1, … , sI) is continuous in (s1, … , sI)  and quasi-concave in si. 

ui(s1, … , sI) is quasi-concave in si 

 if  ∀s’i, s”i, α∈[0,1]     
    ui(αs’i+(1-α)s”i, s-i) ≥  min (ui(s’i, s-i), ui(s”i, s-i)) 



Assignments 

Problem Set 4  (due May 24):   
       Exercises (pp.262-266): 
 1.   8.D.3,  8.D.4,  8.D.5, 8.D.9 
 2.   Read (i) – (v) on the concept of Nash equilibrium  
  (pp.248-249) and summarize them. 

Reading Assignments:   
 Text Chapter 8, pp.253-257 
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