Dominant Strategy

Prisoner's Dilemma

Player 2

Player 1

	DC C	
DC	-2, -2	-10, -1
С	-1, -10	-5, -5

Player 1: "Confess" is the best strategy regardless of what 2 plays.

Player 2: Same. → <u>strictly dominant strategy</u>

<u>Definition 8.B.1</u>: (strictly dominant strategy)

In
$$\Gamma_N = [N = \{0,1,...,I\}, \{S_i\}, \{u_i\}],$$

 $s_i \in S_i$ is a strictly dominant strategy for i

if
$$u_i(s_i, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_i \in S_i - \{s_i\}, \ \forall s_{-i} \in S_{-i}.$$

Domination

<u>Definition 8.B.2</u>: (strictly dominated strategy)

Let $s_i, s'_i \in S_i$. s'_i strictly dominates s_i if $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}) \ \forall \ s_{-i} \in S_{-i}$.

If there exists at least one s'_i that strictly dominates s_i , s_i is said to be strictly dominated.

Player 1

Note: s_i is a strictly dominant strategy if it strictly dominates

all other strategies in S_i.

Player 2

Example 8.B.1:

1: U, M strictly dominates D

1 can eliminate D.

2: no domination

 L
 R

 U
 1, -1
 -1, 1

 M
 -1, 1
 1, -1

 D
 -2, 5
 -3, 2

Weakly Dominant Strategy

Definition 8.B.3:

Let $s_i, s'_i \in S_i$. s'_i weakly dominates s_i if

$$u_i(s'_i, s_{-i}) \ge u_i(s_i, s_{-i}) \quad \forall \ s_{-i} \in S_{-i}$$

$$u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}) \quad \exists \ s_{-i} \in S_{-i}$$

If there exists at least one s'_i that weakly dominates s_i , s_i is said to be weakly dominated.

s_i is a weakly dominant strategy

if it weakly dominates all other strategies in S_i.

Player 2

Example 8.B.2:

1: D weakly dominates U, M

2: no weak domination

1 can eliminate U and M???

Player 1

	L	R
U	5, 1	4, 0
M	6, 0	3, 1
D	6, 4	4, 4

Iterated Deletion

Example 8.B.3:

1 is DA's brother and allow 1 to go free if both play DC.

Player 2

	DC	С
DC	0, -2	-10, -1
С	-1, -10	-5, -5

Player 1

No domination for 1.

2: C strictly dominates DC.

Payoffs and rationality of both players are common knowledge

- → 1 believes 2 eliminates DC and plays C
 (1 knows 2's payoffs and rationality)
- \rightarrow 1 plays C since -5 > -10. \rightarrow (C, C)

Further iteration of deletion is possible.

Note: Order of deletion does not affect the final outcome.

Iterated Deletion of Weakly Dominated Strategies

Deletion of weakly dominated strategies

- → other players play all strategies with positive probability
- \rightarrow C! to iterated deletion

Example 8.B.2:

1: D weakly dominates U, M

2: no weak domination

Delete $M \rightarrow L$ w-dom $R \rightarrow (D, L)$

Delete $U \rightarrow R$ w-dom $L \rightarrow (D, R)$

(Delete M & U \rightarrow (D, L) or (D, R))

	L	R
U	5, 1	4, 0
M	6, 0	3, 1
D	6, 4	4, 4

	L	R
U	5, 1	4, 0
D	6, 4	4, 4

	L R	
M	6, 0	3, 1
D	6, 4	4, 4

<u>Definition 8.B.4</u>: (strictly dominated strategy with mixed strategies)

Let
$$\sigma_i$$
, $\sigma'_i \in \Delta(S_i)$. σ'_i strictly dominates σ_i if
$$u_i(\sigma'_i, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i}) \ \forall \ \sigma_{-i} \in \Pi_{j \neq i} \ \Delta(S_j).$$

 σ_i is said to be strictly dominated

if there exists at least one σ'_i that strictly dominates σ_i ,

 σ_i is a strictly dominant strategy

if it strictly dominates all other strategies in $\Delta(S_i)$.

Pl. 1

No domination for 1 and 2 in pure strategies.

(1/2, 0, 1/2) strictly dominates M.

Pl. 2

	L	R
U	10, 1	0, 4
M	4, 2	4, 3
D	0, 5	10, 2

Proposition 8.B.1:

 $s_i \in S_i$ is strictly dominated in $\Gamma_N = [N = \{0,1,...,I\}, \{\Delta(S_i)\}, \{u_i\}]$ iff there exists $\sigma'_i \in \Delta(S_i)$ such that

$$u_i(\sigma'_i, s_{-i}) > u_i(s_i, s_{-i}) \ \forall \ s_{-i} \in S_{-i} = \prod_{j \neq i} S_j.$$

Delete all strictly dominated pure strategies in Γ_N .

How do we eliminate mixed strategies?

Exercise 8.B.6:

 $s_i \in S_i$ is strictly dominated in $\Gamma_N = [N = \{0,1,...,I\}, \{\Delta(S_i)\}, \{u_i\}]$

 \Rightarrow any strategy that plays s_i with positive probability is also strictly dominated.

Can eliminate some dominated mixed strategies.

Can eliminate further.

Neither U nor D strictly dominated; But (1/2,0,1/2) is strictly dominated By M.

Pl. 1

	L	R
U	10, 1	0, 4
M	6 , 2	6 , 3
D	0, 5	10, 2

Pl. 2

Elimination of dominated strategies in

$$\Gamma_{N} = [N = \{0,1,...,I\}, \{\Delta(S_{i})\}, \{u_{i}\}]$$

- 1. Iteratively eliminate strictly dominated pure strategies.
- 2. Let S^u_i be the remaining pure strategy set of i
- 3. Eliminate strictly dominated mixed strategies in $\Delta(S_i^u)$

Definition 8.C.1:

In
$$\Gamma_N$$
=[N={0,1,...,I}, { $\Delta(S_i)$ }, { u_i }], $\sigma_i \in \Delta(S_i)$ is a best response for i to σ_{-i} if $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i})$ $\forall \sigma_i' \in \Delta(S_i)$.

Strategy σ_i is never a best response if there is no σ_{-i} to which σ_i is a best response.

Note: Strictly dominated \rightarrow never be a best response never be a best response even if not strictly dominated

Pl. 2

	b_1	b_2	b_3	b_4
a_1	0, 7	2, 5	<u>7,</u> 0	0, 1
a_2	5, 2	<u>3</u> , <u>3</u>	5, 2	0, 1
a_3	<u>7</u> , 0	2, 5	0, 7	0, 1
a_4	0, 0	0, -2	0, 0	<u>10</u> , -1

_ denotes the best response

b₄ is <u>not</u> strictly dominated.

Pl. 1

But b_4 is never the best response.

$$a_1 \rightarrow b_1$$

$$a_2 \rightarrow b_2$$

$$a_3 \rightarrow b_3$$

$$a_4 \rightarrow b_1, b_3$$

<u>Iterated elimination</u> of "never be a best response" strategies

Definition 8.C.2:

In Γ_N =[{0,1,...,I}, { $\Delta(S_i)$ }, { u_i }], the strategies in $\Delta(S_i)$ that survives the iterated deletion of strategies that are never be a best response are called i's <u>rationalizable strategies</u>.

Note: Order of deletion does not affect

Pl. 2

		b_1	b_2	b_3	b_4
Pl. 1	a_1	0, 7	2, 5	<u>7,</u> 0	0, 1
	a_2	5, 2	<u>3</u> , <u>3</u>	5, 2	0, 1
	a_3	<u>7</u> , 0	2, 5	0, 7	0, 1
	a_4	0, 0	0, -2	0, <u>0</u>	<u>10</u> , -1

_ denotes best response

 b_4 is never a best response \rightarrow eliminate b_4 \rightarrow a_4 is never a best response \rightarrow eliminate a_4 rationalizable strategies \rightarrow $\{a_1, a_2, a_3\}$ for 1, $\{b_1, b_2, b_3\}$ for 2

Chain of justification:

$$(a_2, b_2, a_2, b_2, a_2, \dots), (a_1, b_3, a_3, b_1, a_1, b_3, \dots)$$

 $(a_4, b_4, nothing)$

Existence of rationalizable strategies ← existence of Nash eq. many rationalizable strategies.

set of rationalizable str.

⊆ remaining strategies after iterative deletion of strictly dominated strategies
 strictly dominated → never be a best response

Two-person games:

set of rationalizable str.

= remaining strategies after iterative deletion of strictly dominated strategies

Note: Three or more person games \rightarrow not true (OK for correlated str.)

Assignments

Problem Set 3 (due May 17):

Exercises (p.262) 8.B.1, 8.B.3, 8.B.6, 8.B.7

Reading Assignments:

Text Chapter 8, pp.246-253