Extensive Form Games

(i) X : a (finite) set of nodes, A: a (finite) set of possible actions $\mathrm{N}=\{1, \ldots, \mathrm{I}\}$: a (finite) set of players
(ii) $p: X \rightarrow X \cup\{\varnothing\}:$ specify a single predecessor x is the initial node (始点) $\rightarrow \mathrm{p}(\mathrm{x})=\varnothing$, denoted x_{0} o.w. $\rightarrow \mathrm{p}(\mathrm{x}) \in \mathrm{X}$
$s(x)=p^{-1}(x)=\{y \in X \mid p(y)=x\}$: the immediate successors of x
Tree structure $\rightarrow\{\mathrm{p}(\mathrm{x})\} \cap \mathrm{s}(\mathrm{x})=\varnothing$
$\mathrm{T}=\{\mathrm{x} \in \mathrm{X} \mid \mathrm{s}(\mathrm{x})=\varnothing\}$: terminal nodes; X-T : decision nodes

Initial node
decision nodes
terminal nodes

Extensive Form Games

(iii) $\alpha: \mathrm{X}-\left\{\mathrm{x}_{0}\right\} \rightarrow \mathrm{A} \quad$ action leads to x

$$
\begin{aligned}
& x^{\prime}, x^{\prime \prime} \in s(x), x^{\prime} \neq x^{\prime \prime} \rightarrow \alpha\left(x^{\prime}\right) \neq \alpha\left(x^{\prime \prime}\right) \\
& c(x)=\left\{a \in A \mid a=\alpha\left(x^{\prime}\right) \text { for some } x^{\prime} \in s(x)\right\}
\end{aligned}
$$

Extensive Form Games

(iv) $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{H}$ (collection of information sets)
$\mathrm{h}(\mathrm{x})$: information set that contains x
$\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{x}^{\prime}\right) \Rightarrow \mathrm{x}, \mathrm{x}^{\prime}$ belong to the same information set

$$
\Rightarrow c(x)=c\left(x^{\prime}\right)
$$

(Information sets form a partition(分割) of X.) choices available at an information set H

$$
C(H)=\{a \in A \mid a \in c(x) \text { for some } x \in H\}
$$

Extensive Form Games

（v） $\mathrm{\imath}: \mathrm{H} \rightarrow\{0,1, \ldots, \mathrm{I}\}$
$\mathrm{l}(\mathrm{H})$ ：the player who moves at the decision nodes in H $H_{i}=\{H \in H \mid i=t(H)\} \quad$ collection of i＇s information sets $\mathrm{H}_{0}=$ collection of information sets containing chance moves
（vi）$\rho: \mathrm{H}_{0} \times \mathrm{A} \rightarrow[0,1]$ probability assigned to an action

$$
\rho(\mathrm{H}, \mathrm{a})=0 \quad \text { if } \mathrm{a} \text { is not in } \mathrm{C}(\mathrm{H})
$$

$$
\sum_{\mathrm{a} \in \mathrm{C}(\mathrm{H})} \rho(\mathrm{H}, \mathrm{a})=1 \quad \text { for all } \mathrm{H} \in \mathrm{H}_{0}
$$

（vii） $\mathrm{u}=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{I}}\right\}$ payoff functions（利得関数）
$\mathrm{u}_{\mathrm{i}}: \mathrm{T}$（set of terminal nodes）$\rightarrow \mathfrak{R}$
Extensive form game

$$
\Gamma_{\mathrm{E}}=\{\mathrm{X}, \mathrm{~A}, \mathrm{~N}=\{0,1, \ldots, \mathrm{I}\}, \mathrm{p}, \alpha, \mathrm{H}, \mathrm{~h}, \mathrm{l}, \rho, \mathrm{u}\}
$$

Finiteness：\＃of actions，\＃of moves，\＃of players

Strategic Form（戦略形）（Normal Form（標準形））Games

Definition 7．D．1：
Player i＇s strategy $s_{i}: H_{i} \rightarrow A$

$$
s_{i}(H) \in C(H) \text { for all } H \in H_{i}
$$

Strategy（戦略）：complete contingent plan that tells a player to do at each of her information sets if she plays there

Strategy

Definition 7.D.1:
Player i's strategy $s_{i}: H_{i} \rightarrow A, s_{i}(H) \in C(H)$ for all $H \in H_{i}$

Example 7.D. 1 (Matching Pennies Version B)

1 has two strategies (H, T)
2 has four strategies
(HH, HT, TH, TT)
$\mathrm{HT} \Rightarrow$ play H if 1 plays H
(left information set)
play T if 1 plays T
(right information set)

Strategy

Definition 7．D．1：
Player i＇s strategy $s_{i}: H_{i} \rightarrow A, s_{i}(H) \in C(H)$ for all $H \in H_{i}$
Example 7．D． 2 （Matching Pennies Version C）
Player 1

1 has two strategies（H，T）
2 has two strategies（H，T）

Notation： $\mathrm{s}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right)$ strategy combination（profile）（戦略の組）

$$
\begin{aligned}
& \mathrm{s}_{-\mathrm{i}}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{i}-1}, \mathrm{~s}_{\mathrm{i}+1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right) \\
& \mathrm{s}=\left(\mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{i}}\right)
\end{aligned}
$$

Strategic Form (Normal Form) Game

Definition 7.D.2:
Strategic form game $\Gamma_{N}=\left[\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\mathrm{S}_{\mathrm{i}}\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right]$

$$
\begin{aligned}
& N=\{0,1, \ldots, I\}: \text { set of players, } S_{i}: \text { player i's strategy set } \\
& u_{i}: S_{1} \times \ldots \times S_{I} \rightarrow \mathfrak{R}, \quad \text { i's payoff function }
\end{aligned}
$$

Example 7.D. 3 (Matching Pennies Version B)

Strategic Form (Normal Form) Game

Note: extensive form game \rightarrow strategic form game (unique) not unique \leftarrow

Randomized Strategy（ランダム戦略）

Definition 7．E．1：（mixed strategy（混合戦略））

$S_{i}:$ i＇s strategy set

$$
\begin{aligned}
\sigma_{\mathrm{i}}: \mathrm{S}_{\mathrm{i}} \rightarrow[0,1] \\
\Sigma_{\mathrm{si} \in \mathrm{Si}_{\mathrm{i}}} \sigma_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right)=1
\end{aligned} \sigma_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{i}}\right) \geq 0: \text { prob. playing } \mathrm{s}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{i}}
$$

$\mathrm{S}_{\mathrm{i}}=\left\{\mathrm{s}_{1 \mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{Mi}}\right\}$（player i has M pure strategies（純粋戦略） i＇s set of mixed strategies

$$
\begin{gathered}
\Delta\left(\mathrm{S}_{\mathrm{i}}\right)=\left\{\left(\sigma_{11}, \ldots, \sigma_{\mathrm{Mi}}\right) \mid \Sigma_{\mathrm{m}=1}{ }^{\mathrm{M}} \sigma_{\mathrm{mi}}=1, \sigma_{\mathrm{mi}} \geq 0 \forall \mathrm{~m}=1, \ldots, \mathrm{M}\right\} \\
\sigma_{\mathrm{mi}}=\sigma_{\mathrm{i}}\left(\mathrm{~s}_{\mathrm{mi}}\right) \quad \text { mixed extension(混合拡張) of } \mathrm{S}_{\mathrm{i}}
\end{gathered}
$$

i＇s expected payoff（期待利得）under $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\mathrm{I}}\right)$

$$
\begin{gathered}
\Sigma_{(\mathrm{s} 1, \ldots, \mathrm{sl}) \in \mathrm{S} 1 \times \ldots \times \mathrm{SI}} \sigma_{1}\left(\mathrm{~s}_{\mathrm{I}}\right) \ldots \sigma_{\mathrm{I}}\left(\mathrm{~s}_{\mathrm{I}}\right) \mathrm{u}_{\mathrm{i}}\left(\mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{I}}\right) \\
\Gamma_{\mathrm{N}}=\left(\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\Delta\left(\mathrm{S}_{\mathrm{i}}\right)\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right), \\
\quad \text { mixed extension of } \Gamma_{\mathrm{N}}=\left(\mathrm{N}=\{0,1, \ldots, \mathrm{I}\},\left\{\mathrm{S}_{\mathrm{i}}\right\},\left\{\mathrm{u}_{\mathrm{i}}\right\}\right),
\end{gathered}
$$

Randomized Strategy

Definition 7．E．2：（behavior strategy（行動戦略））
extensive form game
i＇s behavior strategy λ assigns
to every information set $\mathrm{H} \in \mathrm{H}_{\mathrm{i}}$ and action $\mathrm{a} \in \mathrm{C}(\mathrm{H})$
probability $\lambda_{\mathrm{i}}(\mathrm{a}, \mathrm{H}) \geq 0$

$$
\text { with } \sum_{\mathrm{a} \in \mathrm{C}(\mathrm{H})} \lambda_{\mathrm{i}}(\mathrm{a}, \mathrm{H})=1 \text { for all } \mathrm{H} \in \mathrm{H}_{\mathrm{i}}
$$

Behavior strategy \Rightarrow Mixed strategy

Games with perfect recall
\rightarrow Behavior strategy \Leftrightarrow Mixed strategy

Assignments

Problem Set 2 (due May 10):

 Exercises (page 233) : 7.D.1, 7.D.2, 7.E. 1Reading Assignments:
Text: Chapter 8, pp.235-245

