Pattern Information Processing¹⁸⁴ Support Vector Machines

> Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

(Binary) Classification Problem¹⁸⁵

- Output values are $y_i = \pm 1$.
- We want to predict whether output values of unlearned input points are positive or negative.
- Multi-class problem can be transferred to several binary classification problems:
 - One-versus-rest (1vs.2&3, 2vs.1&3, 3vs.1&2)
 - One-versus-one (1vs.2, 1vs.3, 2vs.3)

(Binary) Classification Problem¹⁸⁶

In classification, we may still use the same learning methods, e.g., quadraticallyconstrained least-squares:

$$\hat{\boldsymbol{\alpha}}_{QCLS} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}} \left[J_{LS}(\boldsymbol{\alpha}) + \lambda \langle \boldsymbol{R} \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle \right]$$

 $\lambda \ (\geq 0)$

$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_i) - y_i \right)^2$$

n

Prediction:

$$\widehat{y} = \operatorname{sign}\left(f_{\hat{oldsymbol{lpha}}}(oldsymbol{x})
ight)$$

0/1-Loss

In classification, only the sign of the learned function is used.

It is natural to use 0/1-loss instead of squared-loss $J_{LS}(\alpha)$:

$$J_{0/1}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} I\left(\operatorname{sign}(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_i)) \neq y_i\right)$$

$$I(a \neq b) = \begin{cases} 0 & (a = b) \\ 1 & (a \neq b) \end{cases}$$

If $J_{0/1}(\alpha)$ corresponds to the number of misclassified samples (thus natural).

Hinge-Loss

However, $J_{0/1}(\alpha)$ is non-convex so we may not be able to obtain the global minimizer.

Use hinge-loss as an approximation:

$$J_H(\boldsymbol{\alpha}) = \sum_{i=1}^n \max\left(0, 1 - u_i\right)$$
$$I_H(\boldsymbol{\alpha}) = \frac{1}{n} \sum_{i=1}^n \left(1 - a_i\right)$$

$$J_{0/1}(\alpha) = \frac{1}{2} \sum_{i=1}^{n} (1 - \text{sign}(u_i))$$

$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(1 - u_i\right)^2$$

Note
$$:y_i^2 = 1, \ 1/y_i = y_i$$

$$u_i = f_{\alpha}(x_i)y_i$$

: Sample-wise margin

188

How to Obtain A Solution 189

$$\hat{\alpha}_{SVM} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[J_{H}(\boldsymbol{\alpha}) + \lambda \langle \boldsymbol{R} \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle \right]$$

$$J_{H}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \max \left(0, 1 - u_{i} \right)$$

How to deal with "max"? Use following lemma:

Lemma: $\max(0, 1 - u) = \min_{\xi \in \mathbb{R}} \xi \quad \text{subject to } \xi \ge 1 - u$ $\xi \ge 0$

Proof: Constraints are $\xi \ge \max(0, 1 - u)$, so the lemma holds. Q.E.D. How to Obtain A Solution (cont¹⁹⁰ So we have

$$J_{H}(\boldsymbol{\alpha}) = \min_{\boldsymbol{\xi} \in \mathbb{R}^{n}} \langle \mathbf{1}_{n}, \boldsymbol{\xi} \rangle \text{ subject to } \boldsymbol{\xi} \geq \mathbf{1}_{n} - \boldsymbol{u}$$
$$\boldsymbol{\xi} \geq \mathbf{0}_{n}$$

Then $\hat{\alpha}_{SVM}$ is given as

$$\hat{\boldsymbol{\alpha}}_{SVM} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{\xi} \in \mathbb{R}^{n}} \begin{bmatrix} \langle \mathbf{1}_{n}, \boldsymbol{\xi} \rangle + \lambda \langle \boldsymbol{R} \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle \end{bmatrix}$$

subject to $\boldsymbol{\xi} \geq \mathbf{1}_{n} - \boldsymbol{u}$
 $\boldsymbol{\xi} \geq \mathbf{0}_{n}$

Support Vector Machines

We focus on the following setting:

•
$$f_{\alpha}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$$

• R = K

$$\boldsymbol{K}_{i,j} = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

191

Setting $\lambda = (2C)^{-1}$, we have

$$egin{aligned} \widehat{oldsymbol{lpha}}_{SVM} = \operatorname*{argmin}_{oldsymbol{lpha}, oldsymbol{\xi} \in \mathbb{R}^n} \left[C \langle oldsymbol{1}_n, oldsymbol{\xi}
angle + rac{1}{2} \langle oldsymbol{K}oldsymbol{lpha}, oldsymbol{lpha}
angle
ight] \ \mathrm{subject \ to} \ oldsymbol{\xi} \geq oldsymbol{1}_n - oldsymbol{u} \ oldsymbol{\xi} \geq oldsymbol{0}_n \ oldsymbol{\xi} \geq oldsymbol{0}_n \ oldsymbol{u}_i = f_{oldsymbol{lpha}}(oldsymbol{x}_i) y_i \end{aligned}$$

Efficient Formulation

The SVM solution can be obtained by

 $[\widehat{oldsymbol{lpha}}_{SVM}]_i = [\widehat{oldsymbol{eta}}_{SVM}]_i y_i$, where

Proof: Homework!

192

$$\widehat{\boldsymbol{\beta}}_{SVM} = \operatorname*{argmax}_{\boldsymbol{\beta} \in \mathbb{R}^n} \left[\sum_{i=1}^n \beta_i - \frac{1}{2} \sum_{i,j=1}^n \beta_i \beta_j y_i y_j \boldsymbol{K}_{i,j} \right]$$

subject to $\mathbf{0}_n \leq \boldsymbol{\beta} \leq C \mathbf{1}_n$

The number of parameters is reduced to n.
 QP standard form:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^n} \left[\frac{1}{2} \langle \boldsymbol{Q} \boldsymbol{\beta}, \boldsymbol{\beta} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{q} \rangle \right] \qquad \boldsymbol{Q}_{i,j} = \boldsymbol{K}_{i,j} y_i y_j \quad \boldsymbol{q} = -\boldsymbol{1}_n \\ \text{subject to } \boldsymbol{H} \boldsymbol{\beta} \leq \boldsymbol{h} \qquad \boldsymbol{H} = \begin{pmatrix} -\boldsymbol{I}_n \\ \boldsymbol{I}_n \end{pmatrix} \quad \boldsymbol{h} = \begin{pmatrix} \boldsymbol{0}_n \\ C\boldsymbol{1}_n \end{pmatrix}$$

Sparseness

KKT optimality condition implies β_i(ξ_i + u_i - 1) = 0 for all i u_i = f̂(x_i)y_i Therefore, some β_i (and thus α_i = β_iy_i also) could be zero.

Examples

Gaussian kernel: $K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|^2}{2c^2}\right)$

Examples (cont.) ¹⁹⁵

Large C

Small C

Examples

196

Original Derivation of SVMs ¹⁹⁷

- The way SVMs were introduced today is quite different from the original derivation.
- Let's briefly follow the original derivation.
 - Hyper-plane classifier
 - VC theory
 - Margin maximization
 - Soft margin
 - Kernel trick

Hyper-plane Classifier ¹⁹⁸

Separate sample space by hyper-plane.

 $f_{\boldsymbol{w}}(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b$ $\widehat{y} = \operatorname{sign}(f_{\boldsymbol{w}}(\boldsymbol{x}))$

find \boldsymbol{w}, b such that $y_i f_{\boldsymbol{w}}(\boldsymbol{x}_i) \geq 1$ for $i = 1, \dots, n$.

Margin

Margin: "Gap" between two classes

Vapnik-Chevonenkis Theory ²⁰⁰ Generalization error:

$$R[\widehat{f}] = \int \int I(\widehat{f}(\boldsymbol{x}) \neq y) p(\boldsymbol{x}, y) d\boldsymbol{x} dy$$

Empirical error:

$$R_{\text{emp}}[\widehat{f}] = \frac{1}{n} \sum_{i=1}^{n} I(\widehat{f}(\boldsymbol{x}_i) \neq y_i)$$
$$I(a \neq b) = \begin{cases} 0 & (a = b) \\ 1 & (a \neq b) \end{cases}$$

Generalization error bound ("VC bound") $R[\widehat{f}] \le R_{\text{emp}}[\widehat{f}] + \sqrt{\frac{1}{n} \left(h \left(\log \frac{2n}{h} + 1\right) + \log \frac{4}{\delta}\right)}$

h: VC dimension (model complexity)

with probability $1 - \delta$

Vapnik-Chevonenkis Theory (cont.) VC bound:

$$R[\widehat{f}] \le R_{\text{emp}}[\widehat{f}] + \sqrt{\frac{1}{n} \left(h\left(\log\frac{2n}{h} + 1\right) + \log\frac{4}{\delta}\right)}$$

Monotone decreasing with respect to VC dimension h (h < n)

If samples are linear separable, empirical error is zero. $R_{emp}[\hat{f}] = 0$

The larger margin is, the smaller VC dim is.

In VC theory, maximum margin classifier is optimal

Soft Margin

203

If samples are not linearly separable, margin cannot be defined.

Allow small error ξ_i .

Non-linear Extension 204

- Transform samples to a feature space by a non-linear mapping $\phi(x)$.
- Then find the maximum margin hyperplane in the feature space.

Kernel Trick

Compute inner product in the feature space by a kernel function:

$$egin{aligned} &\langle \phi(m{x}_i), \phi(m{x}_j)
angle = K(m{x}_i, m{x}_j) \ &orall m{x}, m{x}', \ \ K(m{x}, m{x}') \geq 0 \ & \end{aligned} \ & \end{aligned$$

205

Any linear algorithm represented by inner product can be non-linearized by kernels

 E.g.: Support vector machine, k-nearest neighbor classifier, principal component analysis, linear discriminant analysis, k-means clustering,

Homework

1. Prove that the solution of SVM,

$$egin{aligned} \widehat{oldsymbol{lpha}}_{SVM} &= \operatorname*{argmin}_{oldsymbol{lpha},oldsymbol{\xi} \in \mathbb{R}^n} \left[C \langle oldsymbol{1}_n,oldsymbol{\xi}
angle + rac{1}{2} \langle oldsymbol{K} lpha,oldsymbol{lpha}
angle
ight] \ & ext{subject to }oldsymbol{\xi} \geq oldsymbol{1}_n - oldsymbol{u}, \ oldsymbol{\xi} \geq oldsymbol{0}_n \ & ext{f}_{oldsymbol{lpha}}(oldsymbol{x}) = \sum_{i=1}^n lpha_i K(oldsymbol{x},oldsymbol{x}) \ & ext{u}_i = f_{oldsymbol{lpha}}(oldsymbol{x}_i) y_i \ & ext{K}_{i,j} = K(oldsymbol{x}_i,oldsymbol{x}_j) \end{aligned}$$

is given by $[\widehat{\alpha}_{SVM}]_i = [\widehat{\beta}_{SVM}]_i y_i$, where $\widehat{\beta}_{SVM} = \operatorname*{argmax}_{\beta \in \mathbb{R}^n} \left[\sum_{i=1}^n \beta_i - \frac{1}{2} \sum_{i,j=1}^n \beta_i \beta_j y_i y_j K_{i,j} \right]$

subject to $\mathbf{0}_n \leq \boldsymbol{\beta} \leq C \mathbf{1}_n$

Hint: Use Wolfe dual

Homework (cont.)

208

Lagrangian:

$$egin{aligned} L(oldsymbol{lpha},oldsymbol{\xi},oldsymbol{eta},oldsymbol{\gamma}) &= C\langle oldsymbol{1}_n,oldsymbol{\xi}
angle + rac{1}{2}\langle oldsymbol{K}oldsymbol{lpha},oldsymbol{lpha}
angle \ &-\langleoldsymbol{eta},oldsymbol{\xi}+oldsymbol{u}-oldsymbol{1}_n
angle - \langleoldsymbol{\gamma},oldsymbol{\xi}
angle \end{aligned}$$

$$\beta, \gamma$$
 :Lagrange multiplier
Wolfe duality:

$$\min_{\substack{\boldsymbol{\alpha},\boldsymbol{\xi}\in\mathbb{R}^{n}}} \begin{bmatrix} C\langle \mathbf{1}_{n},\boldsymbol{\xi}\rangle & +\frac{1}{2}\langle \boldsymbol{K}\boldsymbol{\alpha},\boldsymbol{\alpha}\rangle \end{bmatrix} = \max_{\substack{\boldsymbol{\beta},\boldsymbol{\gamma}\in\mathbb{R}^{n}}} L(\boldsymbol{\alpha},\boldsymbol{\xi},\boldsymbol{\beta},\boldsymbol{\gamma})$$

subject to $\boldsymbol{\xi}\geq\mathbf{1}_{n}-\boldsymbol{u}$ subject to $\boldsymbol{\beta}\geq\mathbf{0}_{n}$ $\boldsymbol{\gamma}\geq\mathbf{0}_{n}$
 $\boldsymbol{\xi}\geq\mathbf{0}_{n}$ $\frac{\partial L}{\partial\boldsymbol{\alpha}}=\mathbf{0}_{n}$ $\frac{\partial L}{\partial\boldsymbol{\xi}}=\mathbf{0}_{n}$

Homework

209

- 2. Prepare a toy binary classification problem (say 2-dim input) and test SVM. Then analyze the results by varying experimental conditions (datasets, kernels, regularization parameter*C* etc.).
 - Software is available from, e.g., http://www.support-vector.net/software.html
 - You may play with Java implementation, e.g., http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml