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185(Binary) Classification Problem(Binary) Classification Problem

Output values are              .
We want to predict whether output values of 
unlearned input points are positive or negative.

Multi-class problem can be transferred to 
several binary classification problems:

One-versus-rest (1vs.2&3, 2vs.1&3, 3vs.1&2)
One-versus-one (1vs.2, 1vs.3, 2vs.3)



186(Binary) Classification Problem(Binary) Classification Problem
In classification, we may still use the same 
learning methods, e.g., quadratically-
constrained least-squares:

Prediction:



1870/1-Loss0/1-Loss
In classification, only the sign of the 
learned function is used.
It is natural to use 0/1-loss instead of 
squared-loss             :

corresponds to the number of 
misclassified samples (thus natural).



188Hinge-LossHinge-Loss
However, is non-convex so we may 
not be able to obtain the global minimizer.
Use hinge-loss as an approximation:

: Sample-wise margin



189How to Obtain A SolutionHow to Obtain A Solution

How to deal with “max”?  Use following lemma:

Proof: Constraints are                             ,
so the lemma holds. Q.E.D.

Lemma:



190How to Obtain A Solution (cont.)How to Obtain A Solution (cont.)
So we have

Then            is given as



191Support Vector MachinesSupport Vector Machines
We focus on the following setting: 

Setting                    ,  we have



192Efficient FormulationEfficient Formulation
The SVM solution can be obtained by 

, where

The number of parameters is reduced to   .   
QP standard form:

Proof: Homework!



193SparsenessSparseness

KKT optimality condition implies

Therefore, some      (and thus                also) 
could be zero.



194ExamplesExamples

Gaussian kernel:



195Examples (cont.)Examples (cont.)

Large Small



196ExamplesExamples
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The way SVMs were introduced today is 
quite different from the original derivation.
Let’s briefly follow the original derivation. 

Hyper-plane classifier
VC theory
Margin maximization
Soft margin
Kernel trick

Original Derivation of SVMsOriginal Derivation of SVMs



198Hyper-plane ClassifierHyper-plane Classifier

Separate sample space by hyper-plane.



199

Margin: “Gap” between two classes

MarginMargin

Small margin Large margin Small margin

Margin



200Vapnik-Chevonenkis TheoryVapnik-Chevonenkis Theory
Generalization error:

Empirical error:

Generalization error bound (“VC bound”)

: VC dimension (model complexity)



201Vapnik-Chevonenkis Theory (cont.)Vapnik-Chevonenkis Theory (cont.)
VC bound:

If samples are linear separable, empirical 
error is zero.

The larger margin is, the smaller VC dim is.

Monotone decreasing with respect to VC dimension                  

In VC theory, maximum 
margin classifier is optimal



202

Separate two classes with 
maximum margin

Optimal Hyper-plane ClassifierOptimal Hyper-plane Classifier

Small margin Large margin Small margin

Margin



203Soft MarginSoft Margin
If samples are not linearly separable, 
margin cannot be defined.
Allow small error    .



204

Transform samples to a feature space by 
a non-linear mapping .
Then find the maximum margin hyper-
plane in the feature space.

Non-linear ExtensionNon-linear Extension

Feature spaceInput space

このイメージは、現在表示できません。



205Kernel TrickKernel Trick
Compute inner product in the feature space 
by a kernel function:

Any linear algorithm represented by inner 
product can be non-linearized by kernels

E.g.: Support vector machine, k-nearest neighbor 
classifier, principal component analysis, linear 
discriminant analysis, k-means clustering, 

E.g., Gaussian kernel



Various Losses for ClassificationVarious Losses for Classification
Hinge loss: Support vector machine
Squared loss: Fisher discriminant analysis
Logistic loss: Logistic regression

Exponential loss: Boosting

206



207HomeworkHomework
1. Prove that the solution of SVM,

is given by                               , where

Hint: Use Wolfe dual



208Homework (cont.)Homework (cont.)
Lagrangian:

:Lagrange multiplier
Wolfe duality:



209HomeworkHomework
2. Prepare a toy binary classification problem 

(say 2-dim input) and test SVM. Then analyze 
the results by varying experimental conditions 
(datasets, kernels, regularization parameter   
etc.). 

Software is available from, e.g., 
http://www.support-vector.net/software.html
You may play with Java implementation, e.g., 
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml


