Pattern Information Processing. ${ }^{124}$ Robust Method

Masashi Sugiyama
(Department of Computer Science)

Contact: W8E-505
sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi/

Outliers

■ In practice, very large noise sometimes appears.

- Furthermore, irregular values can be observed by measurement trouble or by human error.
- Samples with such irregular values are called outliers.

Outliers (cont.)

126
\square LS criterion is sensitive to outliers.

$$
f_{\boldsymbol{\alpha}}(x)=\alpha_{1}+\alpha_{2} x
$$

LS (without outlier)

LS (with outlier)
■ Even a single outlier can corrupt the learning result!

Today's Plan

- Robust learning with ℓ_{1}-loss
- Robustness and convexity

Robustness and efficiency

- Robust learning with Huber's loss
- Robustness and sparsity

$$
J_{L S}(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left(f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

- In LS, goodness-of-fit is measured by the squared loss.
- Therefore, even a single outlier has quadratic power to "pull" the learned function.
- The solution will be robust if outliers are deemphasized.

I1-Loss

■ Use ℓ_{1}-loss for measuring goodness-of-fit:

$$
\hat{\boldsymbol{\alpha}}_{\ell_{1}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|\right]
$$

- Outliers influence only linearly!

How to Obtain a Solution $\quad 130$

$$
\hat{\boldsymbol{\alpha}}_{\ell_{1}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|\right] f_{\boldsymbol{\alpha}}(\boldsymbol{x})=\sum_{i=1}^{b} \alpha_{i} \varphi_{i}(\boldsymbol{x})
$$

\square Use the ℓ_{1}-trick:

$$
|\epsilon|=\min _{v \in \mathbb{R}} v \quad \text { subject to }-v \leq \epsilon \leq v
$$

$\square \hat{\boldsymbol{\alpha}}_{\ell_{1}}$ is given as the solution of the following linearly-constrained linear program:

$$
\begin{aligned}
& \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} v_{i}\right] \\
& \text { subject to }-\boldsymbol{v} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y} \leq \boldsymbol{v}
\end{aligned}
$$

Linearly-Constrained Linear Program (LP)

Standard optimization software can solve LP:

$$
\begin{aligned}
\min _{\boldsymbol{\beta}}\langle\boldsymbol{\beta}, \boldsymbol{q}\rangle \text { subject to } \boldsymbol{H} \boldsymbol{\beta} & \leq \boldsymbol{h} \\
\boldsymbol{G} \boldsymbol{\beta} & =\boldsymbol{g}
\end{aligned}
$$

Let $\beta=\binom{\alpha}{\boldsymbol{v}} \begin{aligned} & \boldsymbol{\Gamma}_{\boldsymbol{\alpha}}=\left(\boldsymbol{I}_{b}, \boldsymbol{O}_{b \times n}\right) \\ & \boldsymbol{\Gamma}_{\boldsymbol{v}}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{I}_{n}\right) \\ & \square\end{aligned} \boldsymbol{l} \begin{aligned} & \boldsymbol{\alpha}=\boldsymbol{\Gamma}_{\boldsymbol{\alpha}} \boldsymbol{\beta} \\ & \boldsymbol{v}=\boldsymbol{\Gamma}_{\boldsymbol{v}} \boldsymbol{\beta}\end{aligned}$

- $\sum_{i=1}^{n} v_{i} \square\left\langle\beta, \boldsymbol{\Gamma}_{\boldsymbol{v}}^{\boldsymbol{\top}} \mathbf{1}_{n}\right\rangle$
$\cdot-v \leq X \alpha-y \leq v \longrightarrow\binom{-X \Gamma_{\alpha}-\Gamma_{v}}{X \Gamma_{\alpha}-\Gamma_{v}} \beta \leq\binom{-y}{y}$

Examples

Robustness and Convexity ${ }^{133}$

- Influence of outliers can be further reduced by using a sub-linear loss:

- However, such a sub-linear loss is non-convex.
\square Obtaining a global optimal solution is difficult.

Statistical Interpretation 134

■ Data: Observation = True value + Noise

$$
\left\{y_{i} \mid y_{i}=\mu^{*}+\epsilon_{i}\right\}_{i=1}^{n}
$$

■ Goal: Estimate μ^{*} from $\left\{y_{i}\right\}_{i=1}^{n}$.
$\square \ell_{2}$-loss: Sample mean is the solution.

$$
\widehat{\mu}_{\ell_{2}}=\underset{\mu}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]=\operatorname{mean}\left(\left\{y_{i}\right\}_{i=1}^{n}\right)
$$

${ }^{-} \ell_{1}$-loss: Sample median is the solution.

$$
\widehat{\mu}_{\ell_{1}}=\underset{\mu}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|y_{i}-\mu\right|\right]=\operatorname{median}\left(\left\{y_{i}\right\}_{i=1}^{n}\right)
$$

Proof: Homework!

Robustness and Efficiency ${ }^{135}$

\square We move $\alpha \%$ of samples to infinity.

- Breakdown point: The maximum α with which a learned function still stays finite.
- ℓ_{2}-loss: 0\%

Not at all robust

- ℓ_{1}-loss: 50%

Most robust

■ However, ℓ_{1}-loss is not statistically efficient for Gaussian noise (i.e., having larger variance)

$$
\hat{\boldsymbol{\alpha}}_{\text {Huber }}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \sum_{i=1}^{n} \rho\left(f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)
$$

$$
\rho(\epsilon)=\left\{\begin{array}{cc}
\frac{1}{2} \epsilon^{2} & (|\epsilon| \leq t) \\
t|\epsilon|-\frac{1}{2} t^{2} & (|\epsilon|>t) \\
& t \geq 0
\end{array}\right.
$$

$\square \ell_{2}$-loss for inliers (samples with small errors).
■ ℓ_{1}-loss for outliers (samples with large errors).
P. J. Huber, Robust Statistics, Wiley, 1981.

How to Obtain A Solution: 137 Gradient Descent

$$
\underset{J_{\text {Huber }}(\boldsymbol{\alpha})=\sum_{i=1}^{n} \rho\left(f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right) \xrightarrow{\alpha}-\epsilon \nabla J_{\text {Huber }}(\boldsymbol{\alpha})}{\substack{\text { (}}}
$$

- A quasi-Newton method may also be used.

Quadratic Program (QP)

- Another expression of Huber's loss:

$$
\rho(y)=\min _{v \in \mathbb{R}} g(v) \quad g(v)=\frac{1}{2} v^{2}+t|y-v|
$$

\square Then $\hat{\boldsymbol{\alpha}}_{\text {Huber }}$ can be obtained as the solution of

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}}\left[\frac{1}{2}\|\boldsymbol{v}\|^{2}+t\|\boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v}\|_{1}\right]
$$

\square Using the ℓ_{1}-trick, this is expressed as QP:

$$
\begin{aligned}
& \min _{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}}\left[\frac{1}{2}\|\boldsymbol{v}\|^{2}+t \sum_{i=1}^{n} u_{i}\right] \\
& \text { subject to }-\boldsymbol{u} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v} \leq \boldsymbol{u}
\end{aligned}
$$

Transforming into Standard Form ${ }^{139}$

$$
\begin{aligned}
& \min _{\boldsymbol{\beta}}\left[\frac{1}{2}\langle\boldsymbol{Q} \boldsymbol{\beta}, \boldsymbol{\beta}\rangle+\langle\boldsymbol{\beta}, \boldsymbol{q}\rangle\right] \quad \text { subject to } \boldsymbol{H} \boldsymbol{\beta} \leq \boldsymbol{h}, \begin{aligned}
\boldsymbol{G} \boldsymbol{\beta} & =\boldsymbol{g}
\end{aligned} \\
& \text { Let } \beta=\left(\begin{array}{c}
\alpha \\
u \\
v
\end{array}\right) \begin{array}{l}
\boldsymbol{\Gamma}_{\alpha}=\left(\boldsymbol{I}_{b}, \boldsymbol{O}_{b \times n}, \boldsymbol{O}_{b \times n}\right) \\
\boldsymbol{\Gamma}_{u}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{I}_{n}, \boldsymbol{O}_{n \times n}\right) \\
\boldsymbol{\Gamma}_{v}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{O}_{n \times n}, \boldsymbol{I}_{n}\right)
\end{array} \text { (} \\
& \square \frac{1}{2}\|v\|^{2}+t \sum_{i=1}^{n} u_{i} \square \frac{1}{2}\left\langle\boldsymbol{\Gamma}_{v}^{\top} \boldsymbol{\Gamma}_{v} \boldsymbol{\beta}, \boldsymbol{\beta}\right\rangle+\left\langle\boldsymbol{\beta}, \boldsymbol{\Gamma}_{u}^{\top} \mathbf{1}_{n}\right\rangle \\
& \square-u \leq X \alpha-y-v \leq u \\
& \binom{-X \Gamma_{\alpha}-\Gamma_{u}+\Gamma_{v}}{X \Gamma_{\alpha}-\Gamma_{u}-\Gamma_{v}} \beta \leq\binom{-\boldsymbol{y}}{y}
\end{aligned}
$$

Robustness and Sparseness ${ }^{140}$

■ Huber's method does not generally provide a sparse solution.
\square Combining Huber's loss with ℓ_{1}-penalty:

$$
\hat{\boldsymbol{\alpha}}_{\text {SparseHuber }}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} \rho\left(f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)+\lambda\|\boldsymbol{\alpha}\|_{1}\right]
$$

■ An approximate solution $\hat{\boldsymbol{\alpha}}_{\text {SparseHuber }}$ can be obtained by approximate gradient descent.

Linear Programming Learning ${ }^{141}$

\square Combine ℓ_{1}-loss and ℓ_{1}-constraint:

$$
\hat{\boldsymbol{\alpha}}_{\ell_{1}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|f_{\boldsymbol{\alpha}}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|+\lambda\|\boldsymbol{\alpha}\|_{1}\right]
$$

\square Using the ℓ_{1}-trick, we can obtain $\hat{\boldsymbol{\alpha}}_{L P}$ as the solution of the following LP:

$$
\begin{aligned}
& \underset{\boldsymbol{\alpha}, \boldsymbol{u} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}} {\left[\sum_{i=1}^{n} v_{i}+\lambda \sum_{i=1}^{b} u_{i}\right] } \\
& \text { subject to }-\boldsymbol{v} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y} \leq \boldsymbol{v} \\
&-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u}
\end{aligned}
$$

Transforming into Standard Forim²

$\min _{\boldsymbol{\beta}}\langle\boldsymbol{\beta}, \boldsymbol{q}\rangle$ subject to $\boldsymbol{H} \boldsymbol{\beta} \leq \boldsymbol{h}$
 $$
G \beta=g
$$

Let $\beta=\left(\begin{array}{c}\boldsymbol{\alpha} \\ \boldsymbol{u} \\ \boldsymbol{v}\end{array}\right) \begin{aligned} & \boldsymbol{\Gamma}_{\boldsymbol{\alpha}}=\left(\boldsymbol{I}_{b}, \boldsymbol{O}_{b \times b}, \boldsymbol{O}_{b \times n}\right) \\ & \boldsymbol{\Gamma}_{\boldsymbol{u}}=\left(\boldsymbol{O}_{b \times b}, \boldsymbol{I}_{b}, \boldsymbol{O}_{b \times n}\right) \\ & \boldsymbol{\Gamma}_{\boldsymbol{v}}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{O}_{n \times b}, \boldsymbol{I}_{n}\right)\end{aligned} \quad \Rightarrow \begin{aligned} & \boldsymbol{\alpha}=\boldsymbol{\Gamma}_{\boldsymbol{\alpha}} \boldsymbol{\beta} \\ & \boldsymbol{u}=\boldsymbol{\Gamma}_{\boldsymbol{u}} \boldsymbol{\beta} \\ & \boldsymbol{v}=\boldsymbol{\Gamma}_{\boldsymbol{v}} \boldsymbol{\beta}\end{aligned}$
$\square \sum_{i=1}^{n} v_{i}+\lambda \sum_{i=1}^{b} u_{i} \boldsymbol{\nabla}\left\langle\boldsymbol{\beta}, \boldsymbol{\Gamma}_{\boldsymbol{v}}^{\top} \mathbf{1}_{n}+\lambda \boldsymbol{\Gamma}_{\boldsymbol{u}}^{\top} \mathbf{1}_{b}\right\rangle$

Combinations of

Various Losses and Penalties

	Penalty	None	ℓ_{2}	ℓ_{1} Loss
ℓ_{2}-loss	Efficient	Analytic	Analytic	QP, AGD
Huber		QP, GD	QP, GD	QP, AGD
ℓ_{1}-loss	Roburst	LP, AGD	QP, AGD	LP, AGD

- QP: Quadratic Program, LP: Linear Program, GD: Gradient Descent, AGD: Approximate GD.

Homework

1. Prove

$$
\begin{aligned}
& \widehat{\mu}_{\ell_{2}}=\underset{\mu}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right]=\operatorname{mean}\left(\left\{y_{i}\right\}_{i=1}^{n}\right) \\
& \widehat{\mu}_{\ell_{1}}=\underset{\mu}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|y_{i}-\mu\right|\right]=\operatorname{median}\left(\left\{y_{i}\right\}_{i=1}^{n}\right)
\end{aligned}
$$

under $\left\{y_{i} \mid y_{i}=\mu^{*}+\epsilon_{i}\right\}_{i=1}^{n}$.

Homework (cont.)

2. For your own toy 1-dimensional data, perform simulations using

- Linear/Gaussian kernel models
- Huber learning
and analyze the results, e.g., by changing
- Target functions
- Number of samples
- Noise level

Including outliers in the dataset would be essential for this homework.

