Pattern Information Processing:⁷³ Model Selection by Cross-Validation

> Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Model Parameters

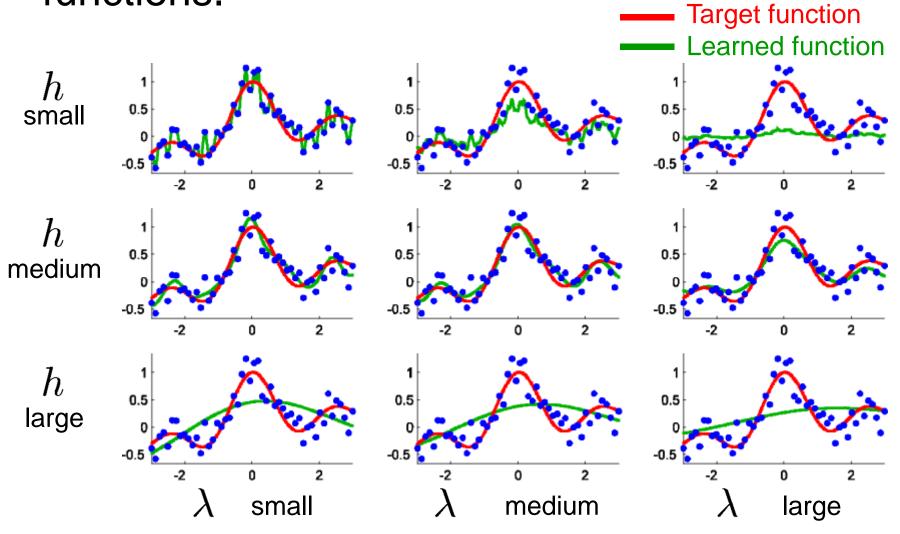
- In the process of parameter learning, we fixed model parameters.
- For example, quadratically constrained leastsquares with a Gaussian kernel model:
 - Gaussian width: h (> 0)
 - Regularization parameter: $\lambda \ (\geq 0)$

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{b}} \left[\sum_{i=1}^{n} \left(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_{i}) - y_{i} \right)^{2} + \lambda \|\boldsymbol{\alpha}\|^{2} \right]$$

$$f_{\boldsymbol{\alpha}}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_i\|^2}{2h^2}\right)$$

Different Model Parameters

Model parameters strongly affect learned functions.



Determining Model Parameters⁷⁶

We want to determine the model parameters so that the generalization error (expected test error) is minimized.

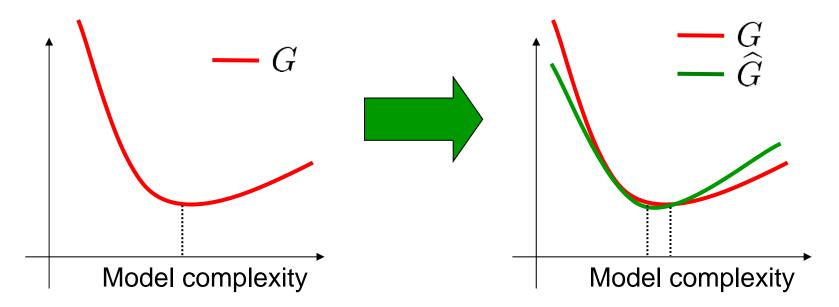
$$G = \int_{\mathcal{D}} \left(\hat{f}(t) - f(t) \right)^2 q(t) dt$$
$$t \sim q(t)$$

However, f(x) is unknown so the generalization error is not accessible.
q(x) may also be unknown.

Generalization Error Estimation⁷⁷

$$G = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{t}) - f(\boldsymbol{t}) \right)^2 q(\boldsymbol{t}) d\boldsymbol{t}$$

Instead, we use a generalization error estimate.



Model Selection

$$\min_{\mathcal{M}} G = \int_{\mathcal{D}} \left(\hat{f}(\boldsymbol{t}) - f(\boldsymbol{t}) \right)^2 q(\boldsymbol{t}) d\boldsymbol{t}$$

- 1. Prepare a set of model candidates. $\{\mathcal{M} \mid \mathcal{M} = (h, \lambda)\}$
- 2. Estimate generalization error for each model. $\widehat{G}(\mathcal{M})$
- 3. Choose the one that minimizes the estimated generalization error.

$$\widehat{\mathcal{M}} = \operatorname*{argmin}_{\mathcal{M}} \widehat{G}(\mathcal{M})$$

Extra-Sample Method

79

Suppose we have an extra example (x', y')in addition to $\{(x_i, y_i)\}_{i=1}^n$.

Idea: Test the prediction performance of the learned function using the extra example.

$$\widehat{G}_{extra} = \left(\widehat{f}(\mathbf{x}') - y'\right)^2$$
$$\widehat{f} \longleftarrow \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$

Extra-Sample Method (cont.)
Suppose
$$(x', y')$$
 satisfies: $\mathbb{E}_{\epsilon'}[\epsilon'] = 0$
 $x' \sim q(x)$ $\mathbb{E}_{\epsilon'}[\epsilon'^2] = \sigma^2$
 $y' = f(x') + \epsilon'$ $\mathbb{E}_{\epsilon'}[\epsilon'\epsilon_i] = 0, \forall i$
 $\mathbb{E}_{\epsilon'}$:Expectation over noise ϵ'
 \widehat{G}_{extra} is unbiased w.r.t. x' and ϵ' (up to σ^2):
 $\mathbb{E}_{x'}\mathbb{E}_{\epsilon'}[\widehat{G}_{extra}] = G + \sigma^2$

Proof:
$$\mathbb{E}_{\boldsymbol{x}'}\mathbb{E}_{\epsilon'}\left(\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}') - \epsilon'\right)^2$$

$$= \mathbb{E}_{\boldsymbol{x}'}\mathbb{E}_{\epsilon'}\left[(\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}'))^2 - 2\epsilon'(\hat{f}(\boldsymbol{x}') - f(\boldsymbol{x}')) + \epsilon'^2\right]$$

$$= G + \sigma^2$$

Extra-Sample Method (cont.)⁸¹

$$\widehat{G}_{extra} = \left(\widehat{f}(\boldsymbol{x}') - \boldsymbol{y}'\right)^2$$
$$\widehat{f} \longleftarrow \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$$

\$\heta_{extra}\$ may be used for model selection.
 However, in practice, such an extra example is not available (or if we have it, it should be included in the original training set!).

Holdout Method

- Idea: Use one of the training samples as an extra sample
 - Train a learning machine using $\{(x_i, y_i)\}_{i \neq j}$ $\hat{f}_j(x) \leftarrow \{(x_i, y_i)\}_{i \neq j}$
 - Test its prediction performance using the holdout sample (x_j, y_j) :

$$\widehat{G}_j = \left(\widehat{f}_j(\boldsymbol{x}_j) - y_j\right)^2$$

Holdout Method (cont.)

83

Suppose $\{(x_i, y_i)\}_{i=1}^n$ satisfies:

$$\begin{aligned} \boldsymbol{x}_i \stackrel{i.i.d.}{\sim} q(\boldsymbol{x}) & \mathbb{E}_{\epsilon_j} [\epsilon_i] = 0 \\ y_i &= f(\boldsymbol{x}_i) + \epsilon_i \\ & \mathbb{E}_{\epsilon_i} \mathbb{E}_{\epsilon_j} [\epsilon_i \epsilon_j] = \begin{cases} \sigma^2 & (i = j) \\ 0 & (i \neq j) \end{cases} \end{aligned}$$

Holdout method is almost unbiased w.r.t. x_j, ϵ_j :

$$\mathbb{E}_{\boldsymbol{x}_j} \mathbb{E}_{\epsilon_j} [\widehat{G}_j] = G_j + \sigma^2 \approx G + \sigma^2$$

$$G_j = \int_{\mathcal{D}} \left(\hat{f}_j(\boldsymbol{x}) - f(\boldsymbol{x}) \right)^2 q(\boldsymbol{x}) d\boldsymbol{x}$$

 $\widehat{f}_j(\boldsymbol{x}) \approx \widehat{f}(\boldsymbol{x})$ if *n* is large

However, \widehat{G}_j is heavily affected by the choice of the holdout sample (x_j, y_j) .

Leave-One-Out Cross-Validation⁸⁴

Idea: Repeat the holdout procedure for all combinations and output the average.

$$\widehat{G}_{LOOCV} = \frac{1}{n} \sum_{j=1}^{n} \widehat{G}_j$$

$$\widehat{G}_j = \left(\widehat{f}_j(\boldsymbol{x}_j) - y_j\right)^2$$

LOOCV is almost unbiased w.r.t. $\{x_i, \epsilon_i\}_{i=1}^n$:

$$\mathbb{E}_{\{\boldsymbol{x}_i\}_{i=1}^n} \mathbb{E}_{\{\epsilon_i\}_{i=1}^n} [\widehat{G}_{LOOCV}]$$

$$\approx \mathbb{E}_{\{\boldsymbol{x}_i\}_{i=1}^n} \mathbb{E}_{\{\epsilon_i\}_{i=1}^n} [G] + \sigma^2$$

k-Fold Cross-Validation

Idea: Randomly split training set into k disjoint subsets $\{\mathcal{T}_j\}_{j=1}^k$.

$$\widehat{G}_{kCV} = \frac{1}{k} \sum_{j=1}^{k} \widehat{G}_{\mathcal{T}_{j}}$$
$$\widehat{G}_{\mathcal{T}_{j}} = \frac{1}{|\mathcal{T}_{j}|} \sum_{i \in \mathcal{T}_{j}} \left(\widehat{f}_{\mathcal{T}_{j}}(\boldsymbol{x}_{i}) - y_{i} \right)^{2}$$
$$\widehat{f}_{\mathcal{T}_{j}}(\boldsymbol{x}) \leftarrow \{(\boldsymbol{x}_{i}, y_{i}) \mid i \notin \mathcal{T}_{j}\}$$

k-fold is easier to compute and more stable than leave-one-out.

Advantages of CV

86

Wide applicability: Almost unbiasedness of LOOCV holds for (virtually) any learning methods

Practical usefulness: CV has been shown to work very well in many practical applications

Disadvantages of CV

Computationally expensive: It requires repeating training of models with different subsets of training samples

Number of folds:

It is often recommended to use k = 5, 10. However, how to optimally choose k is still open.

Closed Form of LOOCV⁸⁸

$$f_{\boldsymbol{\alpha}}(\boldsymbol{x}) = \sum_{i=1}^{b} \alpha_{i} \varphi_{i}(\boldsymbol{x}) \qquad \min_{\boldsymbol{\alpha} \in \mathbb{R}^{b}} \left[\sum_{i=1}^{n} \left(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_{i}) - y_{i} \right)^{2} + \lambda \|\boldsymbol{\alpha}\|^{2} \right]$$

For a linear model trained by quadratically constrained least-squares, the LOOCV score can be expressed as

$$\widehat{G}_{LOOCV} = \frac{1}{n} \|\widetilde{\boldsymbol{H}}^{-1} \boldsymbol{H} \boldsymbol{y}\|^2$$

$$\boldsymbol{H} = \boldsymbol{I} - \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{\top}$$

H :same diagonal as H but zero for off-diagonal

Homework

 Prove the closed-form expression of leaveone-out cross-validation score for a linear model with quadratically constraint least-

squares:
$$\widehat{G}_{LOOCV} = rac{1}{n} \|\widetilde{m{H}}^{-1} m{H} m{y}\|^2$$

Hint: Express $\hat{\alpha}_j$ in terms of $\hat{\alpha}$

- $\hat{\alpha}_j$: Learned parameter without the j-th sample
- $\hat{\alpha}$: Learned parameter with all samples.
- Key formula:

$$(U - uu^{\top})^{-1} = U^{-1} + \frac{U^{-1}uu^{\top}U^{-1}}{1 - u^{\top}U^{-1}u}$$

Homework (cont.)

90

2. For your own toy 1-dimensional data, perform simulations using

- Gaussian kernel models
- Quadratically-constrained least-squares learning and optimize
 - Width of Gaussian kernel
 - Regularization parameter

based on cross-validation. Analyze the results when changing

- Target function
- Number of samples
- Noise level