Nuclear Reactor Physics Lecture Note (5)

- One-speed diffusion theory of a nuclear reactor (1) -

Toru Obara

Tokyo Institute of Technology
5. One-speed diffusion theory of a nuclear reactor
5.1 The time-dependent "slab" reactor
(a)Solution of diffusion equation

Considering a uniform slab of fissile material characterized by cross sections $\Sigma_{\mathrm{a}}, \Sigma_{\mathrm{tr}}, \Sigma_{\mathrm{f}}$ (Slab reactor)

One-speed diffusion equation

$$
\begin{equation*}
\frac{1}{v} \frac{\partial \phi}{\partial \mathrm{t}}-\mathrm{D} \frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}+\Sigma_{\mathrm{a}} \phi(\mathrm{x}, \mathrm{t})=v \Sigma_{\mathrm{f}} \phi(\mathrm{x}, \mathrm{t}) \tag{1}
\end{equation*}
$$

Initial condition

$$
\begin{equation*}
\phi(\mathrm{x}, 0)=\phi_{0}(\mathrm{x})=\phi_{0}(-\mathrm{x}) \quad(\text { symetric }) \tag{2}
\end{equation*}
$$

Boundary conditions

$$
\begin{equation*}
\phi\left(\frac{\tilde{a}}{2}, t\right)=\phi\left(-\frac{\tilde{a}}{2}, t\right)=0 \tag{3}
\end{equation*}
$$

A solution of the form (separation variables)

$$
\begin{equation*}
\phi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{T}(\mathrm{t}) \tag{4}
\end{equation*}
$$

Substituting Eq.(4) to Eq.(1) and dividing by $\psi(x) T(t)$

$$
\begin{equation*}
\frac{1}{\mathrm{~T}} \frac{\mathrm{dT}}{\mathrm{dt}}=\frac{v}{\psi}\left[\mathrm{D} \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}^{2}}+\left(v \Sigma_{\mathrm{f}}-\Sigma_{\mathrm{a}}\right) \psi(\mathrm{x})\right]=\text { constant } \equiv-\lambda \tag{5}
\end{equation*}
$$

hence

$$
\begin{align*}
& \frac{\mathrm{dT}}{\mathrm{dt}}=-\lambda \mathrm{T}(\mathrm{t}) \tag{6}\\
& \mathrm{D} \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}^{2}}+\left(v \Sigma_{\mathrm{f}}-\Sigma_{\mathrm{a}}\right) \psi(\mathrm{x})=-\frac{\lambda}{v} \psi(\mathrm{x}) \tag{7}
\end{align*}
$$

Solution of the time-dependent Eq.(6)

$$
\begin{equation*}
T(t)=T(0) e^{-\lambda t} \tag{8}
\end{equation*}
$$

Space dependent equation

$$
\begin{equation*}
\mathrm{D} \frac{\mathrm{~d}^{2} \psi}{\mathrm{dx}^{2}}+\left(\frac{\lambda}{v}+v \Sigma_{\mathrm{f}}-\Sigma_{\mathrm{a}}\right) \psi(\mathrm{x})=0 \tag{9}
\end{equation*}
$$

Boundary condition

$$
\begin{equation*}
\psi\left(\frac{\tilde{a}}{2}\right)=\psi\left(-\frac{\tilde{a}}{2}\right)=0 \tag{10}
\end{equation*}
$$

here λ is still to be determined.

Considering the eigenvalue problem.

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \Psi}{\mathrm{dx}^{2}}+\mathrm{B}_{\mathrm{m}}{ }^{2} \psi_{\mathrm{n}}(\mathrm{x})=0 \tag{11}\\
& \psi_{\mathrm{n}}\left(\frac{\tilde{\mathrm{a}}}{2}\right)=\psi_{\mathrm{n}}\left(-\frac{\tilde{\mathrm{a}}}{2}\right)=0
\end{align*}
$$

We are interested in symmetric solutions since $\phi_{0}(x)$ is symmetric.

$$
\begin{align*}
& \text { eigen functions : } \psi_{n}(x)=\cos B_{n} x \\
& \text { eigenvalue }: B_{n}{ }^{2}=\left(\frac{n \pi}{\tilde{a}}\right)^{2}, \quad n=1,3,5, \cdots \tag{12}
\end{align*}
$$

If we identify Eq.(9) as the same problem, we must choose

$$
\begin{equation*}
\lambda=v \Sigma_{\mathrm{a}}+v \mathrm{DB}_{\mathrm{n}}{ }^{2}-v v \Sigma_{\mathrm{f}} \equiv \lambda_{\mathrm{n}}, \quad \mathrm{n}=1,3,5 \tag{13}
\end{equation*}
$$

λ_{n} : time eigenvalues

General solution of Eq.(1),

$$
\begin{equation*}
\phi(\mathrm{x}, \mathrm{t})=\sum_{\substack{\mathrm{n} \\ \text { odd }}} \mathrm{A}_{\mathrm{n}} \exp \left(-\lambda_{\mathrm{n}} \mathrm{t}\right) \cos \frac{\mathrm{n} \pi \mathrm{x}}{\tilde{\mathrm{a}}} \tag{14}
\end{equation*}
$$

The solution satisfies the boundary conditions. From initial condition Eq.(2),

$$
\begin{equation*}
\phi(x, 0)=\phi_{0}(x)=\sum_{\substack{n \\ \text { odd }}} A_{n} \cos \frac{\mathrm{n} \pi \mathrm{x}}{\tilde{\mathrm{a}}} \tag{15}
\end{equation*}
$$

Using orthogonality,

$$
\begin{equation*}
A_{n}=\frac{2}{\tilde{a}} \int_{-\frac{\tilde{a}}{2}}^{\frac{\tilde{\tilde{a}}}{2}} d x \phi_{0}(x) \cos \frac{n \pi x}{\tilde{a}} \tag{16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\phi(x, t)=\sum_{\substack{n \\ \text { odd }}}\left[\frac{2}{\tilde{\tilde{a}}} \int_{-\frac{\tilde{a}}{2}}^{\frac{\tilde{\mathrm{a}}}{2}} \mathrm{~d} \mathrm{x}^{\prime} \phi_{0}\left(\mathrm{x}^{\prime}\right) \cos _{\mathrm{n}} \mathrm{x}^{\prime}\right] \exp \left(-\lambda_{\mathrm{n}} \mathrm{t}\right) \cdot \cos \mathrm{B}_{\mathrm{n}} \mathrm{x} \tag{17}
\end{equation*}
$$

where the time eigenvalues λ_{n} are given by

$$
\begin{equation*}
\lambda_{\mathrm{n}}=v \Sigma_{\mathrm{a}}+v \mathrm{DB}_{\mathrm{n}}^{2}-v v \Sigma_{\mathrm{f}}, \quad \mathrm{~B}_{\mathrm{n}}=\frac{\mathrm{n} \pi}{\tilde{\mathrm{a}}} \tag{18}
\end{equation*}
$$

(b)Long time behavior

From Eq.(12)

$$
\begin{equation*}
\mathrm{B}_{1}{ }^{2}<\mathrm{B}_{3}{ }^{2}<\cdots<\mathrm{B}_{\mathrm{n}}{ }^{2}=\left(\frac{\mathrm{n} \pi}{\tilde{\mathrm{a}}}\right)^{2} \tag{19}
\end{equation*}
$$

hence from Eq.(18)

$$
\begin{equation*}
\lambda_{1}<\lambda_{3}<\lambda_{5} \cdots \tag{20}
\end{equation*}
$$

This means that the modes (terms in Eq.(17)) corresponding to larger n decay out rapidly in time.
as $t \rightarrow \infty$

$$
\begin{align*}
& \phi(\mathrm{x}, \mathrm{t}) \sim \mathrm{A}_{1} \exp (-\lambda, \mathrm{t}) \cos \mathrm{B}_{1} \mathrm{x} \tag{21}\\
& \quad(\text { fundamental mode })
\end{align*}
$$

This shows the regardless of the initial shape $\phi_{0}(x)$ the flux will decay into the fundamental mode shape.
It is usual to refer the value of $\mathrm{B}_{\mathrm{n}}{ }^{2}$ characterizing this model as

$$
\begin{equation*}
\mathrm{B}_{1}{ }^{2}=\left(\frac{\pi}{\tilde{\tilde{a}}}\right)^{2} \equiv \mathrm{~B}_{\mathrm{g}}{ }^{2} \equiv \text { geometric buckling } \tag{22}
\end{equation*}
$$

$$
\left[\begin{array}{c}
\text { Thus nomenclature is used since } \mathrm{B}_{\mathrm{n}}{ }^{2} \text { is a } \\
\text { measure of the curvature of the mode shape } \\
\mathrm{B}_{\mathrm{n}}{ }^{2}=-\frac{1}{\psi_{\mathrm{n}}} \frac{\mathrm{~d}^{2} \psi_{\mathrm{n}}}{\mathrm{dx}^{2}}
\end{array}\right]
$$

(c)Criticality condition

What is required to make the flux distribution in the reactor time-dependent i.e. what is required to make the fission chain reaction steady-state

We will define this situation to be that of reactor criticality :

Criticality \equiv when a time-independent neutron flux can be sustained in the reactor (in the absence of sources other than fissions)

The general solution of the flux

$$
\begin{equation*}
\phi(\mathrm{x}, \mathrm{t})=\mathrm{A}_{1} \exp (-\lambda, \mathrm{t}) \cos ^{1} \mathrm{~B}_{1} \mathrm{x}+\sum_{\substack{\mathrm{n}=3 \\ \text { odd }}}^{\infty} \mathrm{A}_{\mathrm{n}} \exp \left(-\lambda_{\mathrm{n}} \mathrm{t}\right) \cos \mathrm{B}_{\mathrm{n}} \mathrm{x} \tag{23}
\end{equation*}
$$

It is evident that requirement for a time-independent flux is just that the fundamental eigenvalue vanish.

$$
\begin{equation*}
\lambda_{1}=0=v\left(\Sigma_{\mathrm{a}}-v \Sigma_{\mathrm{f}}\right)+v \mathrm{DB}_{1}{ }^{2} \tag{24}
\end{equation*}
$$

since then higher modes ($\mathrm{n}=3,5, \cdots$) will have negative $-\lambda_{\mathrm{n}}$ and decay out in time, leaving just,

$$
\phi(\mathrm{x}, \mathrm{t}) \rightarrow \mathrm{A}_{1} \cos \mathrm{~B}_{1} \neq \text { function of time }
$$

From Eq.(24), using notation $\mathrm{B}_{1}{ }^{2}=\mathrm{B}_{\mathrm{g}}{ }^{2}$

$$
\begin{align*}
\mathrm{B}_{\mathrm{m}}{ }^{2}=\mathrm{B}_{\mathrm{g}}{ }^{2} & \text { (criticality condition) } \tag{25}\\
\text { where, } & \mathrm{B}_{\mathrm{m}}{ }^{2} \equiv \frac{v \Sigma_{\mathrm{f}}-\Sigma_{\mathrm{a}}}{\mathrm{D}} \quad \text { (material buckling) } \tag{26}
\end{align*}
$$

To achieve a critical reactor, we must either adjust the size $\left(\mathrm{B}_{\mathrm{g}}{ }^{2}\right)$ or the core composition $\left(\mathrm{B}_{\mathrm{m}}{ }^{2}\right)$ such that $\mathrm{Bm}^{2}=\mathrm{Bg}^{2}$
we also note,

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{m}}{ }^{2}>\mathrm{B}_{\mathrm{g}}{ }^{2} \Rightarrow \lambda_{1}<0 \Rightarrow \text { super critical } \\
& \mathrm{B}_{\mathrm{m}}{ }^{2}=\mathrm{B}_{\mathrm{g}}{ }^{2} \Rightarrow \lambda_{1}=0 \Rightarrow \text { critical } \\
& \mathrm{B}_{\mathrm{m}}{ }^{2}<\mathrm{B}_{\mathrm{g}}{ }^{2} \Rightarrow \lambda_{1}>0 \Rightarrow \text { sub critical }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{g}}^{2}=\left(\frac{\pi}{\tilde{\mathrm{a}}}\right)^{2} \\
& \mathrm{~B}_{\mathrm{m}}{ }^{2}=\frac{v \Sigma_{\mathrm{f}}-\Sigma_{\mathrm{a}}}{\mathrm{D}} \\
& \mathrm{t} \rightarrow \infty \quad \phi(\mathrm{x}, \mathrm{t}) \rightarrow \mathrm{A}_{1} \exp \left(-\lambda_{1} \mathrm{t}\right) \cdot \cos _{\mathrm{g}} \mathrm{x}
\end{aligned}
$$

