Chapter 4 Valuing Benefit and Cost in Primary Markets

Primary Markets: Directly affected by a policy or project
Secondary Markets: Indirectly affected
Competitive Market (Perfect Competitive):
Pareto Efficiency: Ideal Market based on Microeconomics Theory

Distorted Markets (Market Failures or Government Failures)
Pareto Inefficiency: Monopoly, Information Asymmetry, Externalities, Public Goods and so on.

Measuring Benefits in (Pareto) Efficient Markets

Social surplus change (ignoring costs of project inputs to the government):
Project (a): Direct increase in supply of q-gain of triangle abc plus project revenue equal to area of rectangle $q_{2} c b q_{1}$
Project (b): Supply schedule shift through cost reductions for producers-gain of trapezoid abde

Monopoly

Monopoly: Only one firm in the market Monopoly firm can choose the level of price and output.

MR > MC should produce more output.

MR < MC should stop produce.
$\mathrm{MR}=\mathrm{MC}$ for Profit maximization

Revenue and Marginal Revenue

Natural Monopoly

Large fixed costs and small variable cost
Public utilities (roads, railway, bridges, gas, electricity)
$\longrightarrow \begin{aligned} & \text { Subsidy } \\ & \text { Regulation }\end{aligned}$

Externalities

Goods, but not sold on markets (positive and negative) Social Cost $=$ private cost + impose on other agents

How to "monetize" impacts? Case of Transport Project

Generalized Cost

is an amount of money representing the overall disutility (or inconvenience) of traveling between origin i and destination j by a particular mode.

Zoning
Origin i
Destination j

Components of Generalized Cost

Public Transport
Fare, Giving up time,
Car
Giving up time,
Toll Charge,
VOC (Vehicle Operating Costs):
Fuel, Oil, Tire \& Tube, Maintenance and Depreciation

Other components?

Market in Transport Service

Price $=$ Generalized Cost
WTP is the maximum amount of money that a user would be willing to pay to make a trip. (can be interpreted as a maximum generalized cost that they are prepared to accept a trip)

Definition of User Benefit Change in Consumer Surplus $\mathrm{UB}=\mathrm{CS}_{1}-\mathrm{CS}_{0}$
CS_{1} : do-something $=$ with-project
CS_{0} : do-minimum $=$ without-project

Improved transport condition by the transport project
Reduction of Generalized Cost e.g. time saving
accidents reductions
Rule of a Half

$$
U B=\int_{G C 1}^{G C 0} D(G C) d G C=\frac{1}{2}\left(G C_{0}-G C_{1}\right)\left(Q_{0}+Q_{1}\right)
$$

Generalized Cost Function

$G C=\alpha T+\beta L$

GC: generalized cost by day and by vehicle type [yen/ vehicle]
α : value of time by day and by vehicle type [yen/ vehicle*minute]
β : VOC by vehicle type [yen/ vehicle*km]
T : average travel time by vehicle type [minute]
L : travel distance by vehicle type [km]

User benefit (per day) m: vehicle type. i,j: origin and destination.
weekday $B U_{n}=\sum_{m, i, j} \frac{1}{2}\left(G C_{0}-G C_{1}\right)\left(Q_{0}+Q_{1}\right)$
holiday $B U_{s}=(h$ factor $) \cdot \sum_{m, i, j} \frac{1}{2}\left(G C_{0}-G C_{1}\right)\left(Q_{0}+Q_{1}\right)$
annual user benefit $\quad B U_{n} \times 243+B U_{s} \times 122$

Measurement of Value of Time

1) Resource value, based on Opportunity Cost
a) Average (expected) gross wage rate (per hour)
b) National annual income data (instead of gross wage rate) ex. VOT $=$ GDP / number of employment / working time
2) Behavioral value, based on Generalized Cost Function

Utility $=G C=-0.147 T W-0.0411 T T-2.24 C$
(estimated by mode choice model)
$\mathrm{VOT}=0.0411 / 2.24$
$=1.10 \mathrm{US} \$ / \mathrm{hr} /$ person

