Basics of UWB Technologies - Utilization of Wide Spectrum -

Content

- · What is UWB
- · History and Recent Trend of UWB
- · Principle of UWB
- Application of UWB
- Technical Issues for Antennas & RF Circuits
- Interference Problem
- Conclusion

2012/05/25

Wireless Communication Eng. I

UWB

Ultra Wide Band

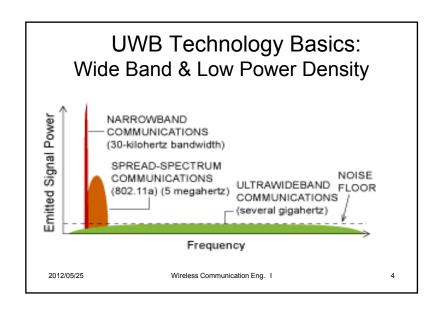
(more than 25% relative bandwidth transmission)

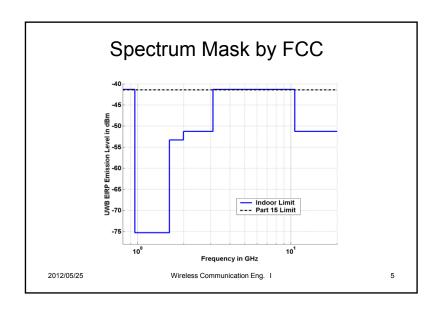
- By Using Short Impulse or Monocycle Signals,
 Communication / Sensing / Imaging technologies
- In 2002 FCC allowed an use of UWB spectrum
- Physical Layer Technologies adopted for IEEE 801.15
- · Carrier-less: IF Circuits, Mixer, etc are not required
- Originally, Military Radar/Communication Technology

2012/05/25

Wireless Communication Eng. I

History and Recent Trend of UWB

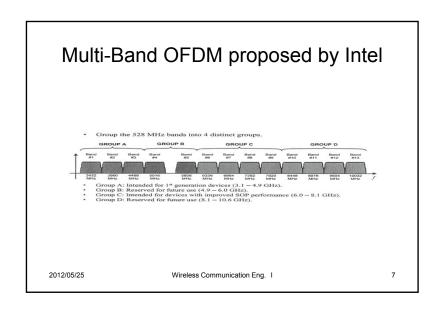

- 1901 Marconi's frontier work on wireless communication is an Impulse transmission.
- 1998 Time Domain Inc. etc, asked FCC to use UWB.
- 1998 FCC started a technical review on UWB.
- 2002, 2 FCC allowed a commercial use for UWB.
- 2002, 5 First International Conference on UWB
- 2002, 9 UWB SG organized by MPT, Japan


2012/05/25

2

Wireless Communication Eng. I

Ü



Equivalent Noise Temperature

- -41.3dBm/MHz \rightarrow 0.742 × 10^-13 [Joule]
- kT: Power Spectrum Density
- T=5.38×10^9 [°C]
- Too High Temperature !!

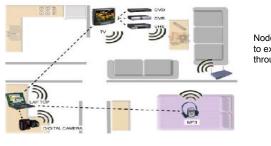
2012/05/25 Wireless Communication Eng. I

UWB's Application

- · Imaging Systems
 - Ground Penetrating Radar
 - Wall-Imaging, Through-Wall Imaging
 - Medical-Imaging
- · Vehicular Radar Systems
 - Collision Avoidance Radar
- · Communication Systems
 - Short Range (~10m) Communications
 - WPAN (Wireless Personal Network)

2012/05/25

Wireless Communication Eng. I


Ω

Prototypes by Venture Companies

- Time Domain (From 1989)
 - Pulse On 200
- · Xtreme Spectrum Inc.
 - Data Rate100Mbps (High Speed)
 - Transmission Power 200mW (Low Power)

2012/05/25 Wireless Communication Eng. I 10

Xtreme Spectrum's View of Home Networking

Nodes form a mesh to extend range throughout house

http://www.xtremespectrum.com/products/UWBWhitePaper.pdf

2012/05/25

Wireless Communication Eng. I

9

11

· Broad Band Transmission

$$C = W \log_2 \left(1 + \frac{S}{N}\right)$$
$$= W \log_2 \left(1 + \frac{S}{WN_0}\right)$$

Channel Capacity

Where S : signal power

N : noise powerW : bandwidth

 N_0 : noise power spectrum density

Upper Bound

$$C \le \frac{1}{\ln 2 N_0}$$

 $\lim_{V \to \infty} C = \frac{S}{\ln 2 \, N_0}$

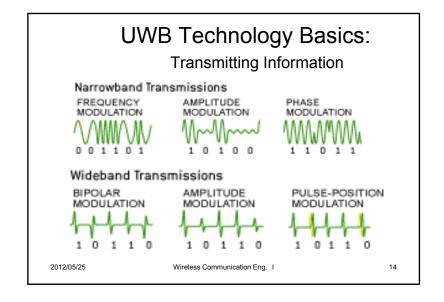
2012/05/25 Wireless Communication Eng.

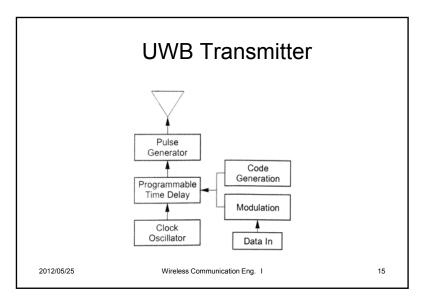
Low Power Transmission by Wide Band

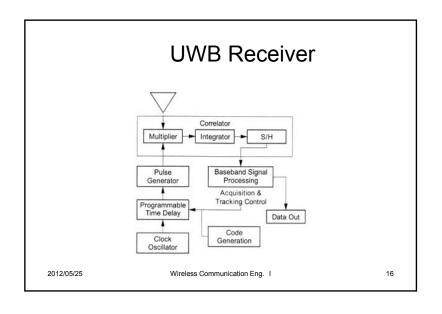
- Channel Capacity C is a monotonic increasing function of bandwidth W for given S and N_0
- · But there is an upper bound
- For thermal noise N_0 (Power spectrum density) = kT
- k : Boltzmann constant ,T : Temperature
- For T=300 K N 0= -174dBm/Hz
- And for C=1Gbps S=-84dBm is enough

2012/05/25 Wireles

Wireless Communication Eng. I


12


Principle of UWB Transmission


- Modulation
 - PAM (Amplitude)
 - OOK (ON/OFF)
 - PPM (Time Position)
 - Bi-Phase
- Carrier-less Transmission
- · Broad banding
 - TM-UWB (Time-Modulated)
 - DS-UWB (Direct Sequence Phase Coding)

2012/05/25

Wireless Communication Eng. I

Unbalance in TX and RX

• TX is simple, and low-cost.

2012/05/25

- RX is complicated due to high-speed time domain processing.
- Template pulse waveform should be adaptively modified including channel characteristics for Matched Filtering.
- Frequency Domain Processing → Time Domain Processing
- Amplitude/Phase Control → Amplitude/Delay Control

Wireless Communication Eng. 1

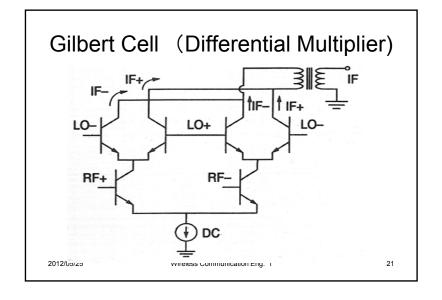
Matched Filter Concept

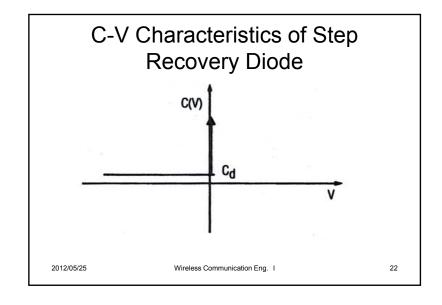
- Transmitting Pulse Waveform : s(t)
- Receiving Pulse Waveform: r(t)=s(t)+n(t)
- Filtering:
- · Sampling and decision
- Optimum Filtering for Maximizing SNR
- $H(\omega) = S(\omega) * \exp(-j\omega Ts)$

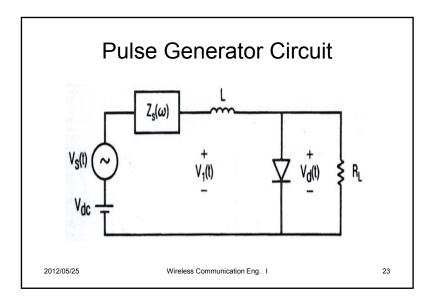
2012/05/25 Wireless Communication Eng. I 18

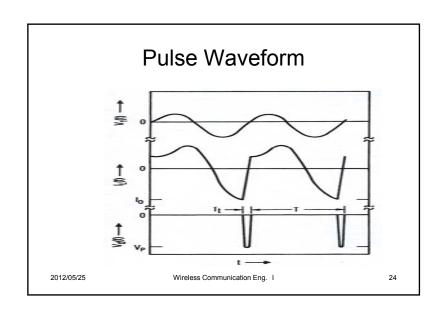
Technical Issues on Antenna and RF Circuit

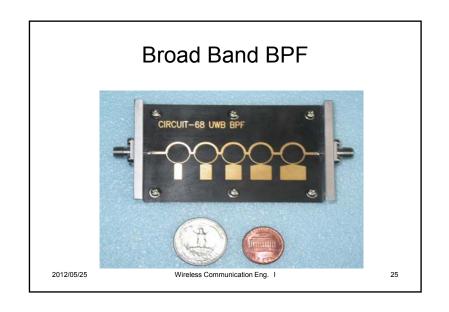
- Wide Band Antenna → Low Efficiency, Diamond Dipole, COTAB
- High Precision Timer (Pico second order)
- High Speed Multipliers, Correlators
- Variable Delay Line
- Wide Band Front-end LNA, RF BPF

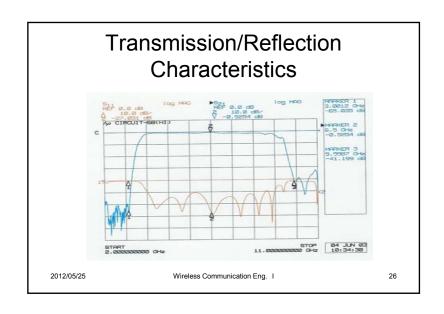

2012/05/25 Wireless Communication Eng. I

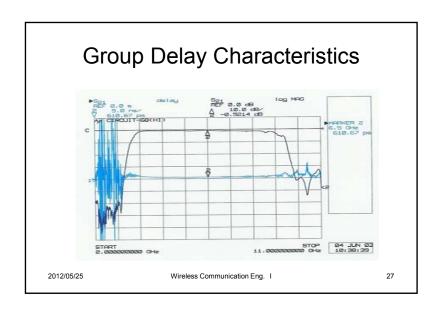

Broadband Multipliers/Amplifiers

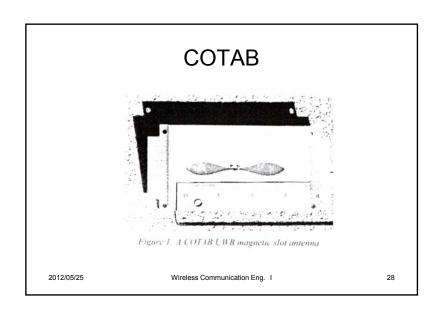

- Si-Ge or CMOS Devices are suitable for this application.
- Front-end Multipliers/Amplifiers are key components.

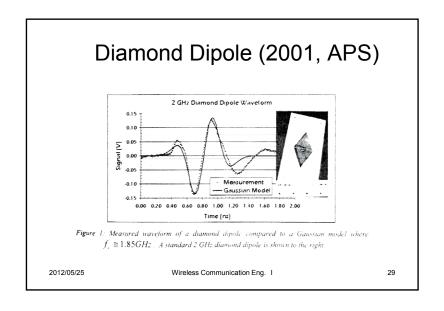

2012/05/25

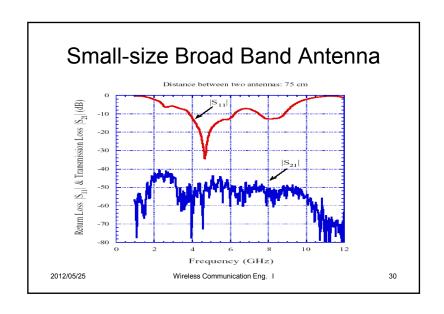

Wireless Communication Eng. I

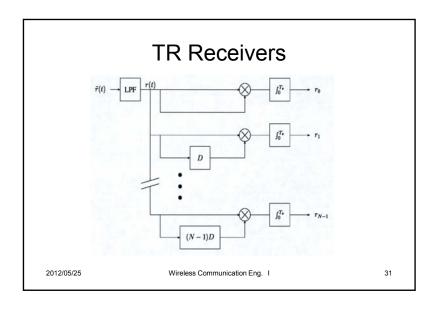












Square (Power) Detector → Multiplier?

$$a(t)*b(t) = \frac{[a(t)+b(t)]^2 - [a(t)-b(t)]^2}{4}$$
[]²: Square Detection

±: Linear Processing

2012/05/25

Wireless Communication Eng. I

Interference Problem

- UWB → Narrow Band Communication Systems (including GPS)
 - 41.3dBm / MHz
 Allowable Radiation Power from Electronics Equipments, e.g. PC
- Narrow Band Communication Systems → UWB?
 - Coding Technique over Frequency Domain

2012/05/25

Wireless Communication Eng. I

Channel Modeling for UWB

- · CLEAN Algorithm for Clustering and Modeling
- Measured propagation characteristics are to be de-convolved into antennas and channel characteristics.
- Broad band/ High speed measurement systems are also to be developed in Frequency/ Time Domain.

2012/05/25

Wireless Communication Eng. I

34

Channel characteristics

- · Fading or Shadowing?
- Not Frequency Flat but Frequency Selective
- Pulse distortion ⇒ Increase of BER

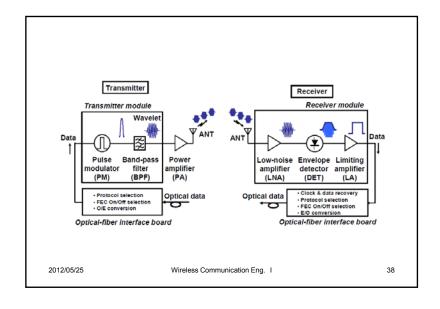
2012/05/25

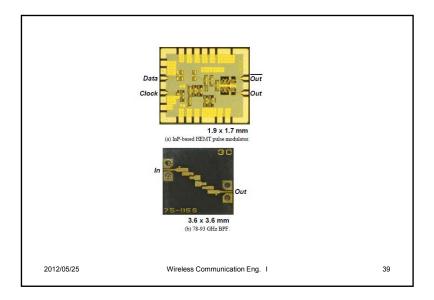
Wireless Communication Eng. I

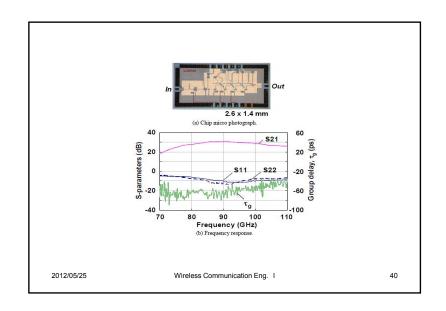
MIMO for UWB

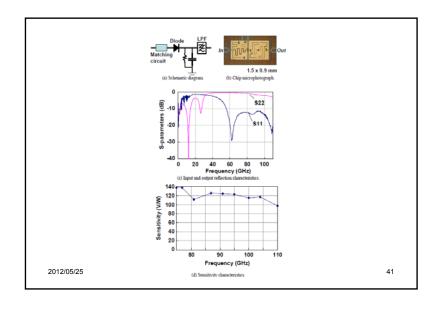
- Time Domain beam/null forming should be developed for UWB-MIMO. → Delay Control
- Conventional beam/null forming has been done in Frequency Domain. → Phase Control

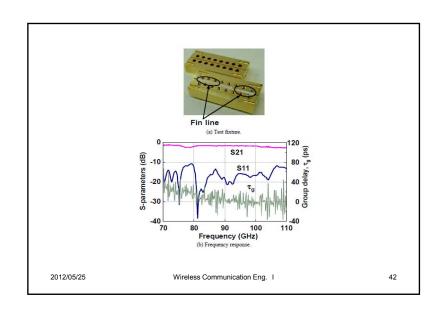
2012/05/25

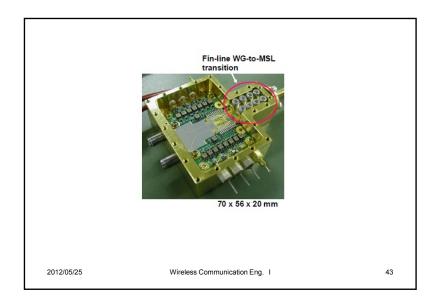

Wireless Communication Eng. I

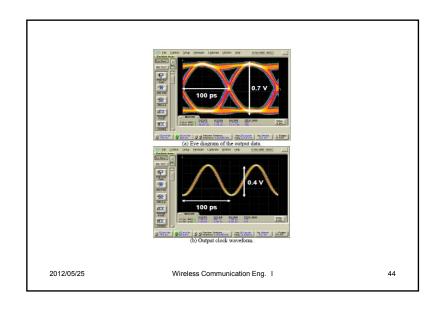

36

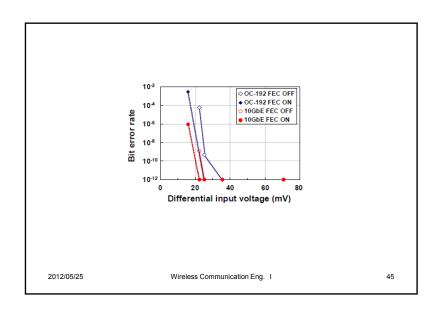

Prototype of IR UWB

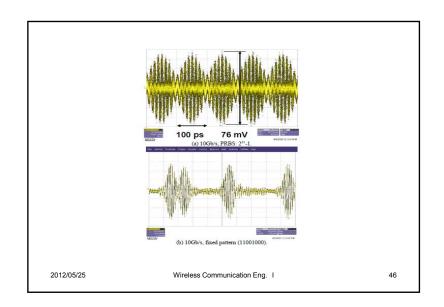

- · Millimeter-wave Region
- 10 Gps Data Rate
- OOK Modulation

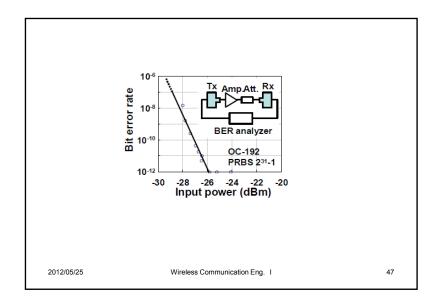

2012/05/25 Wireless Communication Eng. I











2012/05/25

Wireless Communication Eng. I

(b) Receiver.

2012/05/25 Wireless Communication Eng. I

Conclusion

- UWB is a challenging theme for device/communication/signal processing researchers and engineers.
- High-speed and precise signal processing devices and algorithms are necessary in time domain.
- Nonlinearity due to large peak value should be considered.
- Narrow Band transmission → Carrier-less transmission.
- Frequency Domain → Time Domain Processing

2012/05/25

Wireless Communication Eng. I

50

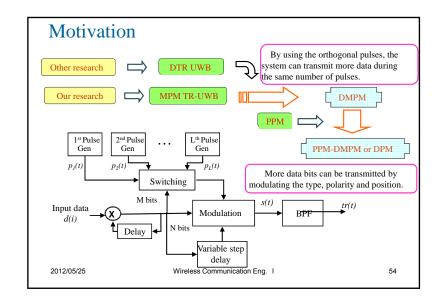
Multiple Access Performance of TR-UWB System Using a Combined PPM and DMPM

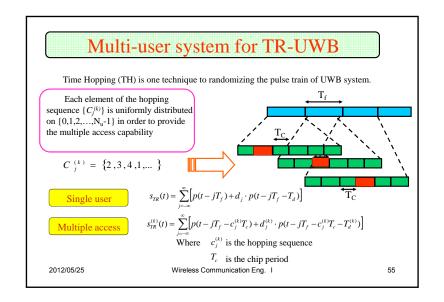
2012/05/25

Wireless Communication Eng. I

13

Content


- Background
- Motivation
- Multi-user system for PPM-DMPM TR-UWB
- Receiver
- Simulation result and Discussion
- Conclusion

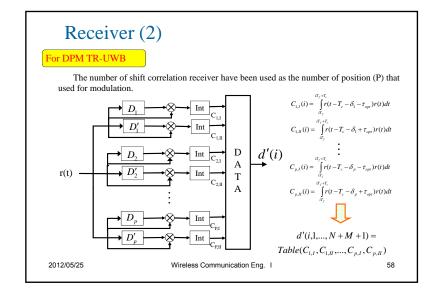

2012/05/25

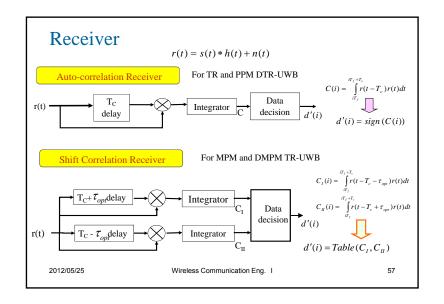
Wireless Communication Eng. I

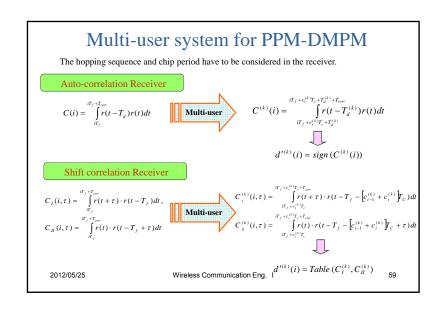
52

Background • Ultra wide-band (UWB) technology has recently emerged as a promising candidate for high throughput short range wireless communication system. • UWB system is characterized by low emission, high data rates and spectrum "Wireless Design" Microwave engineering, March 2005 Frame period TR-UWB Signa • Later, Transmit-Reference UWB (TR-UWB) approach has been envisioned as a promising effective method to avoid channel estimation. However, at least two pulses are necessary for transmitting one data bit that lead to decrease data rate of the system. 2012/05/25 Wireless Communication Eng. 1 53

Multiple access for TH-PPM-DMPM TR-UWB system

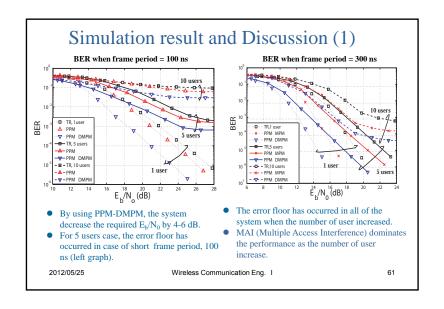

$$\begin{split} s_{TR}^{(k)}(t) &= \sum_{j=-\infty}^{\infty} \left[p(t-jT_f - c_j^{(k)}T_c) + d_j^{(k)} \cdot p(t-jT_f - c_j^{(k)}T_c - T_d^{(k)}) \right] \\ s_{DMPM}^{(k)}(t) &= \sum_{j=-\infty}^{\infty} \left[dd_{j,1}^{(k)} \cdot p_{(dd_{j,2}^{(k)}, dd_{j,3}^{(k)}, \dots, dd_{j,m+1}^{(k)})}(t-jT_f - c_j^{(k)}T_c) \right] \\ s_{DPM}^{(k)}(t) &= \sum_{j=-\infty}^{\infty} \left[dd_{j,1} \cdot p_{(dd_{j,2}^{(k)}, dd_{j,3}^{(k)}, \dots, dd_{j,m+1}^{(k)})}(t-jT_f - c_j^{(k)}T_c - \delta(dd_{j,m+2}^{(k)}, \dots, dd_{j,m+n+1}^{(k)})) \right] \end{split}$$

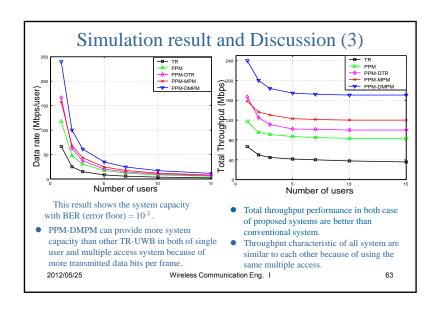

In order to prevent interframe interference and inter chip interference


		TH-TR UWB	TH-DMPM	TH-PPM-DMPM	
T_f > $(N_u - 1)T_C$		$> (N_u - 1)T_C + T_P + \max\{T_d^{(k)}\} + T_{mds}$	$> (N_u - 1)T_C + T_P + T_{mds}$	$> (N_u - 1)T_C + T_P + \max\{\delta^{(k)}\} + T_{mds}$	
	T_{C}	$> T_P + \max\left\{T_d^{(k)}\right\} + T_{mds}$	$>T_{mds}$	$> \max\left\{\delta^{(k)}\right\} + T_{mds}$	

2012/05/25

Wireless Communication Eng. I




Simulation Specification

Pulse	Gaussian and Rayleigh monocycle	
Modulation	PPM and DPM	
Pulse period	0.5 ns	
Chip period	1-20 ns	
Frame period	10-400 ns	
Number chips per frame (Nc)	10, 20	
Filter	Bandpass (3.1-10.3 GHz)	
Channel	S-V model with NLOS 1-4 m (CM2)	

2012/05/25 Wireless Communication Eng. I 60

Conclusion

- By using SCR, the proposed system can achieve the excellent error and total throughput performance of the system.
- When frame period has become longer, although the error performance has been improved, the maximum data rate of the system will be decreased.
- By using the proposed system, PPM-DMPM TR-UWB, more total throughput has been achieved, e.g.

	TR-UWB	PPM	PPM-DMPM
For single user	70 Mbps	115 Mbps	240 Mbps
For multi-users	40 Mbps	85 Mbps	185 Mbps

2012/05/25

Wireless Communication Eng. I