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MIMO transmission

• Combination of Antenna Technology and 
Signal Processing for designing wireless 
channel

• Orthogonalization is an effective way for 
increase of channel capacity

• Time, Frequency(OFDM)
⇒ Space(MIMO)
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Friis Formula

• TX antenna＋Channel＋RX antenna
• TX/RX antennas : Deterministics 

Designable
• Channel : Stochastics  Un-designable
• Gt(λ/4πｄ）^2Gr
• Gt:TX antenna Gain Gr:TX antenna Gain
• （λ/4πd）^2：Free Space Loss
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MIMO History

• BLAST
• MUD (Multi user detection)
• Space-time Code
• TX Diversity
• Advanced PHS
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BLAST

• Sequential Zero-forcing for Multi-stream 
Detection

• Diversity can be obtained at later stage
• Bell Laboratory originally proposed
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MUD (Multi-User Detection)

• If # of RX antennas is Mr, then signals 
from Mr users can be separated and 
detected simultaneously

• RX should know the channel responses 
for each user
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Space-Time Coding

• For 2 TX antennas 
Alamouti ST-Code

• 2 column vectors are 
orthogonal to each 
other

• TX does not need the 
channel responses

• Diversity order : 2
for TX side
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Diversity

• RX side : 1×N channel ⇒ Diversity 
order :N

• TX side : N×1 channel ⇒ Diversity 
order : N
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Diversity Order
• For N i.i.d. Rayleigh channels

• MRC (Maximum SN-Ratio Combining) 

• Weight Vector

 t
nhhh ),,, 21 h

n 21

 hw

2011/05/16 11 Wireless Communication 
Engineering Ⅰ

MRC Synthesized Channel
• For each channel, pdf of SNR 

γ is exponential distribution
Γ：average SNR

• MRC synthesized channel’s 
SNR becomes Gamma 
distribution
cf.  Nakagami-m distribution

• Average Bit-error rate Pe is 
inversely proportional to n-th 
power of the average SNR
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Advanced PHS

• Space Division Multiplexing
• “i-burst” (IEEE802.20) uses also SDMA
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Channel Coding Theorem

• For R<C , there exists a code  such that
an average error probability for any code 
word decreases exponentially with code 
length N  [ Reliable Communication]

• For R>C an average error probability of 
code word approaches to unity 
exponentially by increasing N for any code
[ No reliable communication]

• R : Data Rate C : Channel Capacity
2011/05/16 14
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SISO Channel Capacity

• Channel Capacity

• Frequency Efficiency
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Frequency Efficiency
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MIMO Channel Capacity
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• Equi-TX Power Case

• Fading Average (Ergodic Capacity)
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MIMO Channel Matrix Analysis
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• MIMO Channel Degree

• MIMO Channel Matrix Orthogonalization

• MIMO Channel Eigen Mode
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MIMO Channel Capacity 
Analysis
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• Eigen Mode Channel

• Eigen Mode MIMO Channel Capacity
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MIMO channel can be reconstructed 
by Signal Processing at Base-band.

• Unitary Matrix V at TX conserves a total TX power.

• Unitary Matrix UH at RX conserves a RX noise property.
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MIMO Eigen Mode System
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Eigen-value Distribution for non 
correlation Channel
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CDF of Channel Capacity
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Water Pouring Algorithm
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• Optimum TX Power Assignment

• Water Pouring Theorem
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Channel Capacity Improvement by 
Optimum Power Assignment
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MIMO Channel Capacity      Antenna 
Size

cf. Adaptive Array    log(Antenna Size)

MIMO Channel can be transformed to 
Eigen-mode sub-Channels

∝

∝
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MIMO Propagation 
Measurement
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Measurement Systems

PC

AWG
4ch

transmitter
4ch

receiver
8ch

DSO

GPIB

position
controller

x-y positioner

ULAULA

VATT
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Procedure
TX Frame Upload

Positioner Set

1 Frame Data-In

Synchronize, Demod.

Error Count

END?
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Center Freq. 5.2 [GHz]

TX Power -13 [dBm/channel] → SNR = 
15[dB]

Bandwidth 1875 [kHz]→125 [ksps] α=0.5
Modulation QPSK / 16QAM
Frame 512 (31: Training, 480: Data)
Array 2 Sleeve Antenna with λ/ 2 sep.
Scheme SISO / SM-ZF / STBC
# of Points 256 Points (30 [cm] 2[cm] 

Spacing)
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Environment
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TX Array Antenna
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RX Array Antenna
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Channel Capacity Analysis
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Channel Capacity Analysis
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Channel Capacity
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Correlation Characteristics
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MIMO Propagation 
Measurement

MIMO Configuration 4(Tx) x 4(Rx) 
Antenna Configuration ULA spacing half a wavelength
Central Frequency 5.06 GHz
Bandwidth 20 MHz
Signal IEEE802.11a modified standard
Spatial Sample 50,993 (2cm step) 382011/05/16 38
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SNR & Spatial Correlation 
Distribution

• SNR decreases as far from the Tx
 Free space path loss
 Shadowing
 Penetration loss

• Spatial correlation is high even in NLOS environment
 Wooden house is not a richly scattering 
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Throughput Distribution (1)

 Multiplexing gain effect in high
SNR area

 Degradation of MIMO in low
SNR area

Results

402011/05/16 40
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Throughput Distribution (2)
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Average throughput
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Average Throughput

• Scheme which does not require CSI at Tx：
 Throughput performance improvement of MIMO with high 

SNR
 QRM-MLD shows best performance
 Performance degradation of MMSE to SISO in low SNR 

area
• If CSI is available at Tx, SVD-MIMO is superior to the other 

schemes
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1% Outage Throughput

• Small different in average and outage performance of 
QRM-MLD and SVD-MIMO implies reliable schemes

• Large different in average and outage performance of 
MMSE implies the sensitiveness to channel variation
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HW

• cPCI 8 channel A/D
• cPCI 8 channel D/A
• cPCI FPGA・DSP
• cPCI 8 channel RF TX Unit
• cPCI 8 channel RF RX Unit
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A/D

2Mgate FPGA

14bit 80Msps A/D

cPCI 128bit User I/O

DRAM interface

32bit FIFO
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DSP

ADSP-21160

Audio OUT

cPCI 128bit User I/O 32bit FIFO

Link OUTDigital I/O

2Mgate FPGA
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System DiagramcPCI 6U

4-ele ULA

CPU board

Tx RF board (4ch, 5.06GHz, 16dBm)

Rx RF board (4ch, -110dBm to -40 dBm)

D/A board (8-ch, 80MHz, 14bit)

A/D board (8-ch, 80MHz, 14bit)

DSP board (6M gates FPGA, 2GFlops DSP)
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Sub-systems
 RFBoard

 LocalBoard

 Fc = 5.03 – 5.09GHz
 B = 20MHz x 3 channel
 P = 16dBm/channel
 AGC = 70dB
 TPC = 50dB

 1st Lo = 4470MHz
 2nd Lo = 570MHz
 BB clock = 80MHz
 stability = 10^-11

 ADBoard

 DABoard

 DSPBoard

 AD = 14bit, 80Msps
 FIFO = 128kwords(32bit)
 FPGA = 2Mgates x 5 (frame synch, FFT)

 AD = 14bit, 125Msps
 FIFO = 128kwords(32bit)
 FPGA = 2Mgates x 5 (IFFT, frame format)

 FPGA = 200Mgates x 3
(channel estimation, demodulation, decode)

 DSP = 5MFlops x 4 (matrix inverse, etc.)
 CPU core = MicroBlaze (protocol, controller)
 API = C or MATLAB driver
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MIMO-OFDM Transmitter MIMO-OFDM Receiver

# 1
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IEEE802.11a
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推
定

ZF
復
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• IEEE802.11a 
• 48Subcarrier, Adaptive Mod.
• e.g. 16QAM x 4 = 192Mbps

• short preamble for Frame Sync.
• long preamble for Channel Meas.
• ZF Demod. → MATLAB GUI
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MIMO-OFDM送信機 MIMO-OFDM受信機
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調

• IEEE802.11a ４多重
• 48サブキャリア, 変調多値数可変
• e.g. 16QAM x 4 = 192Mbps

• short preamble によるフレーム同期
• long preamble によるチャネル推定
• ZF 復調 → MATLAB GUI
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Measurement Equipment
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RF Module
Center 
Frequency 4.8 [GHz]

TX Power 30 [dBm/channel]

Bandwidth 30 [MHz]

# of Channel 8

Transmission 
Scheme

Multi-tone (sounder), 
OFDM (802.11a, 4G)
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MIMO Transmission

• Multi-data stream ⇒ High PAPR ( Peak 
to Average Power Ratio)

• Pre-coding reduces PAPR problem, 
however.

• Multi-data stream ⇒ Sensitive to 
Imbalance in I-Q MODEM
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MIMO Systems

MIMO
transmitter

MIMO
receiver

# 1

# ms # mr

# 1

• Multi-Input Multi-Output
• Same Frequency Band, Same Time

•synchronization

•channel             
estimation

•zero forcing

•STB decoder

•spatial 
multiplexing

•STB encoder
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MIMO Data Transmission 
Analysis

Spatial Multiplexing - Zero Forcing

Space Time Block Code

Features
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MIMO 2x2 QPSK Received 
Signal

Matched Filter Output ZF Output
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MIMO 2x2 16QAM Received 
Signals

Matched Filter Output ZF Output
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Data Transmission Analysis 
(SER)
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RF Issues

• MIMO Duplexers
• MIMO Mixers
• Linearized PA for High PAPR
• Switched Diversity for RF Switch and 

Detectors
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Future Works

• Adaptive MIMO : Parasitic Array 
Antenna

• Multi-user MIMO : User diversity & 
Scheduling

• Virtual MIMO : Cooperative Base 
Station

• Differential Codebook : Low  
amount of CSI Feedback
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Adaptive MIMO

• Cross layer design between RF and BB
• Parasitic Antenna ＋ active antenna
• Control of “Re-radiation” from parasitic 

antenna
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Background

• MIMO from antenna point of view

Antenna performance Channel capacity

• Limit of space
• Cost
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Antenna Patterns
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Using Yagi-Uda Antenna in MIMO

Antenna Configuration Transmission Model
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Performance   

Fig. Radiation pattern of optimized array 
(excited #v1)

Fig. Radiation pattern of optimized array 
(excited #h1)
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Multi-user Scheduling in MIMO

• MIMO ⇒ SDMA
• Multi-user Scheduling ⇒ “User diversity”
• Combination of SDMA & User Diversity
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System Model

• Single user MIMO 
link
– Only chooses one 

user in one time
• Multi-user MIMO 

link
– Transmits to 

several users at the 
same time

BS

UE 1

UE 2

UE 3

UE K

Hk

H1

H2

H3

Transmit antenna number of BS 
= receive antenna number of each UE
= m

s
s1

s2
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Simulation Result
(4x4 MIMO i.i.d. Rayleigh fading)
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Cooperative Transmission

• Cooperative Transmission between 
Adjacent Base Stations ⇒ Virtual MIMO

• Improvement of Throughput at Cell-edge
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Code Book for MIMO

• TX and RX share the same code book for 
pre-coding unitary matrices

• An address in the code book is only 
feedback from RX to TX

• Haussholder transformation can be used 
for successive reduction of vector size
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Conclusion

• MIMO is a key technology for future 
wireless communication system.

• Feedback of Channel State Information is 
a necessary task.

• Design of MIMO transceivers is a 
challenging theme for RF engineers and 
Antenna engineers 

• Switched MIMO transceiver is a promising 
candidate for compact architecture.
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