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MIMO transmission

» Combination of Antenna Technology and
Signal Processing for designing wireless
channel

» Orthogonalization is an effective way for
increase of channel capacity

» Time, Frequency(OFDM)
= Space(MIMO)
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Friis Formula

 TX antenna—+Channel4+RX antenna

* TX/RX antennas : Deterministics
Designable

» Channel : Stochastics Un-designable

« Gt(M4td)"2Gr

+ Gt:TX antenna Gain Gr:TX antenna Gain
+ (M41d)*2:Free Space Loss
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MIMO History

BLAST

MUD (Multi user detection)
» Space-time Code

TX Diversity

Advanced PHS
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BLAST

» Sequential Zero-forcing for Multi-stream
Detection

+ Diversity can be obtained at later stage
 Bell Laboratory originally proposed
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MUD (Multi-User Detection)

* If # of RX antennas is M,, then signals
from M, users can be separated and
detected simultaneously

* RX should know the channel responses
for each user
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Space-Time Coding

* For 2 TX antennas
Alamouti ST-Code

» 2 column vectors are 5 B S*
orthogonal to each C=|" 2
other S S*

2 1

» TX does not need the
channel responses

+ Diversity order : 2
for TX side
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Diversity

* RX side : 1 XN channel = Diversity
order :N

* TX side : Nx 1 channel = Diversity
order: N
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Diversity Order

* For N i.i.d. Rayleigh channels

h = (h1>h29"'9hn)t
* MRC (Maximum SN-Ratio Combining)

I'=1I|+1,+---+1]

n

+ Weight Vector
w=h"
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MRC Synthesized Channel

» For each channel, pdf of SNR
y is exponential distribution

I:average SNR p(y)=exp(-y/T)/T

* MRC synthesized channel's
SNR becomes Gamma

o p(y)=7""exp(~y IT)AT"(n-1))

cf. Nakagami-m distribution

» Average Bit-error rate Pe is

inversely proportional to n-th =1/ Y ~ n
power of the average SNR Pe 1/{(r * 1) 2} =0.5/T
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Advanced PHS

» Space Division Multiplexing
* “i-burst” (IEEE802.20) uses also SDMA
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Channel Coding Theorem

* For R<C , there exists a code such that

an average error probability for any code
word decreases exponentially with code
length N [ ]

» For R>C an average error probability of
code word approaches to unity
exponentially by increasing N for any code
[ No reliable communication]

* R: Data Rate C : Channel Capacity
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SISO Channel Capacity

* Channel Capacity TX Power
P

Cyso = Blog,[1+——]h[*] [bitis]

SISO g,[ BN [h|]

Bandwidth 0

) Noise Power Density
* Frequency Efficiency

P
Caso /B =log,[1+— | h[’] mit/s/Hz]
o)

Noise Power
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Frequency Efficiency
SNR Bandwidth

SNR = 20[dB] @ 100 [kHz] bandwidth
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MIMO Channel Capacity

« Equi-TX Power Case

Chinio = log,[det(l + HH")] [bit/s/Hz]

2
S

 Fading Average (Ergodic Capacity)
Cyinvo = E[Cyno 1= ICMIMO (H) f (H)dH

Channel Matrix pdf
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MIMO Channel Matrix Analysis

* MIMO Channel Degree
m=mm[ m,, m, ]

m, #TX -Ant m, #RX - Ant
* MIMO Channel Matrix Orthogonalization

H=uUzVv"
* MIMO Channel Eigen Mode

EZdlag[\/Z»a\/Z]
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MIMO Channel Capacity
Analysis
* Eigen Mode Channel
y=Hs+n
V'=2>s"+n'

RX Weight m=min[ m,m] TX Weight
m #TX-Ant m #RX - At

* Eigen Mode MIMO Channel Capacity
P A [bit/s/Hz]
mS

Cyivo = Zlog o1+ e

i=1
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MIMO channel can be reconstructed
by Signal Processing at Base-band.

¢ Unitary Matrix V at TX conserves a total TX power.
2 2
s'=Vs =1

* Unitary Matrix UH at RX conserves a RX noise property.

S'

nN=U"n  nn"=m" =4

2011/05/16 Wireless Communication 20
Engineering I




MIMO Eigen Mode System

Eigen-value Distribution for non
correlation Channel

o 4x4)

{ — MIMO ch. 4
|| —— MIMO ch. 3
—— MIMO ch. 2
[ —— MIMO ch. 1 |~
—— MIMO total

107 :
-20 -10 0 10 20
power of subchannels [dB]
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cumulative distribution
=

VM NV
#1 — #1
S | S1
N/ NV
—_—
—V UH—o
Sm Vo M 4 Sm
# m, #m,
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CDF of Channel Capacity
%df of channel capacity @ average SNR = 20 [dB]
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Water Pouring Algorithm

* Optimum TX Power Assignment

P=P

i
i=1

- P

Cymvo = Zlogz[l +6_|2/1i]
i=1

» Water Pouring Theorem

m A,
Copt = Z [IOg 2 [,U O__Iz]]
i=1

2011/05/16 Wireless Communication 24
Engineering I




Channel Capacity Improvement by
Optimum Power Assignment

average channel capacity with power adaptation

“SNR=10[dB] C

H - - SNR=20[dB]
- - SNR=30[dB]
SNR=10[dB] with p.a. |

|| — SNR=20[dB] with p.a.
—— SNR=30[dB] with p.a.

~
o
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e < I
o o o

channel capacity [bit/s/Hz]

o

(=]

MIMO arrav size
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OMIMO Channel Capacity o< Antenna
Size
cf. Adaptive Array o< log(Antenna Size)

OMIMO Channel can be transformed to
Eigen-mode sub-Channels
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MIMO Propagation
Measurement
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Measurement Systems

ULA ULA
AWG 4ch L VATT Jlt 4ch | | 8ch
transmitter receiver DSO
GPIB |
position *
controller | |
PC X-y positioner
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Procedure
|

TX Frame Upload

1

]

Positioner Set

]

]

Synchronize, Demod.

]

[
[
[ 1 Frame Data-In
[
[

Error Count

}7
1
1
1

T

Center Freq. |5.2 [GHZ]

TX Power -13 [dBm/channel] — SNR =
15[dB]

Bandwidth 1875 [kHz]—125 [ksps] a=0.5

Modulation |QPSK/16QAM

Frame 512 (31: Training, 480: Data)

Array 2 Sleeve Antenna with A/ 2 sep.

Scheme SISO / SM-ZF / STBC

# of Points  [256 Points (30 [cm] 2[cm]
Spacing)

Engineering I
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TX Array Antenna
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RX Array Antenna
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Channel Capacity Analysis

SISO Channel Capacity Distribution

SISO capacity [bit/s/Hz] @ average SNR = 10[dB] MIMO 4x4 capacity [bit/s/Hz] @ average SNR = 10[dB]

0=

30

MIMO Channel Capacity Distribution

Channel Capacity Analysis

CDF of capacity @ average SNR = 10 [dB]

—— MIMO 4x4 measured
—— MIMO 2x2 measured
—— SISO measured
—— MIMO 4x4 theory
—— MIMO 2x2 theory
—— SISO theory

5 10 15
channel capacity [bit/s/Hz]

cumulative distribution
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Channel Capacity
18 average channel capacity
— average SNR = 0 [dB] measured |
16| — average SNR=5 [dB] measured | | _ _ _ _ _ _ _ |
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Correlation Characteristics

Correlation at AP and UT

e © © 9 ©o © 9o
©w B o > N ® © =

Correlation Coefficient

o
[

o

=)

Antenna Index
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MIMO Propagation

hﬂooeljre

MIMO Conflguratlon 4(Tx) x 4(Rx)

Antenna Configuration | ULA spacing half a wavelength
Central Frequency . [5.06 GHz

Bandwidth 20 MHz

Signal IEEE802.11a modified standard
shatial Sample wirebRPeANRLREM Step) 3838
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SNR & Spatial Correlation

Distribution
E_ SN

=
0.845
* SNR decreases as far from the Tx

> Free space path loss

> Shadowing

> Penetration loss
. Spatial correlation is high even in NLOS environment

sndialVooden house ig not a richly, scattering
enVIronment Engineering I
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Correlation Coefficient
0.95

Throughput Distribution (1)
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Throughput Distribution (2)

QRM-MLD|bps/Hz]
------------ - | (655]
| =

SISO|bps/Hz]
22

i ‘ 20

Average throughput
Outage throughput
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Average Throughput

20
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» Scheme which does not require CSI at Tx:
> 'Sl'hroughput performance improvement of MIMO with high
NR

50

Average throughput [bps/Hz]
Average throughput [bps/Hz]

> QRM-MLD shows best performance
» Performance degradation of MMSE to SISO in low SNR

area , o
. hgoleginies available at Tx,W é%ﬁﬁﬁwgnfg superior to the other”

1% Outage Throughput
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» Small different in average and outage performance of
QRM-MLD and SVD-MIMO implies reliable schemes

+ Large different in average and outage performance of
2MMGE implies the sensitivenessida.channel variation 43
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HW

cPCI 8 channel A/D

cPCI 8 channel D/A

cPCI FPGA-DSP

cPCI 8 channel RF TX Unit
cPCI 8 channel RF RX Unit
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p
)
Digital /O  Audio OUT  Link OUT
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4-ele ULA

aSystem Diagram

Tx RF board (4ch, 5.06GHz, 16dBm)

CSMA, TPC
antenna switch
AGC

7'
Rx RF board (4ch, -110dBm to -40 dBm) ]

arQ N _ | #1Q

D/A board (8-ch, 80MHz, 14bit)
o N
A/D board (8-ch, 80MHz, 14bit)

ISS¥

DSP board (6M gates FPGA, 2GFlops DSP)

| | trigger

2011/05/16

| 16bit, 33MHz ‘
‘ CPU board |
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4-ele ULA

cPCI 6U
T e

O
£z
<12 1R
s = 2
2= <
r

5

| | trigger
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| Sub-systems

> RFBoard -‘j > ADBoard -
. MIMO-OFDM Transmitter MIMO-OFDM Receiver
v AD = 14bit, 80Msps

v = —
Fc =5.03 - 5.09GHz v FIFO = 128kwords(32bit)
¥ B = 20MHz x 3 channel v FPGA = 2Mgates x 5 (frame synch, FFT)
¥ P = 16dBm/channel 9 ynen,
v AGC = 70dB » DABoard !
v TPC = 50dB
v' AD = 14bit, 125Msps
» LocalBoard - v FIFO = 128kwords(32bit)
v FPGA = 2Mgates x 5 (IFFT, frame format)
v 15t Lo = 4470MHz > DSPBoard !
v 2nd Lo = 570MHz
v BB clock = 80MHz v FPGA = 200Mgates x 3
v stability = 10*-11 (channel estimation, demodulation, decode)
v DSP = 5MFlops x 4 (matrix inverse, etc.) * [IEEE802.11a « short preamble for Frame Sync.
v CPU core = MicroBlaze (protocol, controller) * 48Subcarrier, Adaptive Mod. « long preamble for Channel Meas.
v APl = C or MATLAB driver * e.g. 16QAM x 4 = 192Mbps * ZF Demod. — MATLAB GUI
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Measurement Equipment
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RF Module

Center 4.8 [GHZ]
Frequency

TX Power 30 [dBm/channel]
Bandwidth 30 [MHZz]

# of Channel 8

Transmission Multi-tone (sounder),
Scheme OFDM (802.11a, 4G)
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MIMO Transmission

* Multi-data stream = High PAPR ( Peak
to Average Power Ratio)

* Pre-coding reduces PAPR problem,
however.

e Multi-data stream = Sensitive to
Imbalance in I-Q MODEM

2011/05/16 Wireless Communication
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MIMO Systems

* Multi-Input Multi-Output
» Same Frequency Band, Same Time

MIMO MIMO
transmitter 4 N\ receiver
#1 #1
espatial esynchronization
multiplexing N N «channel
«STB encoder estimation
N/ N/ «zero forcing
#my #m,
*STB decoder
2011/05/16 Wireless Communication 55
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MIMO Data Transmission
Analysis
Spatial Multiplexing - Zero Forcing

| Features
S= H y Diversity  * mr — ms +1
Rate : m
Space Time Block Code
. Features
C= Si% Diversity M. XM,
s, S, Rate  : <1

2011/05/16 Wireless Communication
Engineering I

56




MIMO 2x2 QPSK Received
Signal

Matched Filter Output ZF Output

MIMO 2x2 QPSK decimated signal constellation

MIMO 2x2 QPSK ZF demodulated signal constellation
2

MIMO 2x2 16QAM Received
Signals

Matched Filter Output ZF Output

MIMO 2x2 16QAM decimated signal constellation MIMO 2x2 16QAM ZF demodulated signal constellation
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Data T ission Analysi
100 QPSK. fading sample = 256, data length = 512, training length = 31
E S
10°
Q
+ =
e 10
.
o
I
a1
°
Q _
£ 10 <
7 i MIMO 2x2 STBC theory
H — MIMO 2x2 ZF theory
10°Y SISO theory
B —— MIMO 2x2 STBC measured
f —e— MIMO 2x2 ZF measured
ol SISO measured
105, 5 10 15
received average SNR [dB]
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MIMO Duplexers
MIMO Mixers
Linearized PA for High PAPR

Switched Diversity for RF Switch and
Detectors
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Future Works

» Adaptive MIMO : Parasitic Array
Antenna

» Multi-user MIMO : User diversity &
Scheduling

* Virtual MIMO : Cooperative Base
Station

« Differential Codebook : Low
amount of CSI| Feedback
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Background

* MIMO from antenna point of view

Channel capacity

L

2011/05/16 ation

Engineering I

Adaptive MIMO

» Cross layer design between RF and BB
» Parasitic Antenna + active antenna
» Control of “Re-radiation” from parasitic

antenna

2011/05/16
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Using Yagi-Uda Antenna in MIMO

Multi-path environment Rezctve 1,?”"‘”aﬁ””

#

—D )

#
Reactive termmation ﬂ'
#y,) /\
A )
6
il “\\7
. Parasitc dipoles Hori ‘
Variical pol arasitic dipoles Horizontal pol Proposed User Terminal antenna
(mx2 elements)
Y X Access Point
antenna
Antenna Configuration Transmission Model
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Performance

Multi-user Scheduling in MIMO

« MIMO = SDMA
 Multi-user Scheduling = “User diversity”
« Combination of SDMA & User Diversity
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 Single user MIMO
link
— Only chooses one
user in one time
* Multi-user MIMO
link
UEK — Transmits to
Transmit antenna number of BS several users at the
= receive antenna number of each UE .
=m same time
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Simulation Result
(4x4 MIMO i.i.d. Rayleigh fading)

A MIMO SR 10JED

I
13
]

Theoughoul e fe/He)
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Cooperative Transmission

» Cooperative Transmission between
Adjacent Base Stations = Virtual MIMO

* Improvement of Throughput at Cell-edge

System model

« 2 Base Stations with 4 TXx Antennas each
« 6 users with 2 Rx Antennas each
o Select 4 users

K . ;;‘r:“ .%

I';J
v r| - i
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« Path loss and Fadms
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« Fair or Greedy System Gapacity

L} 1 p—
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Code Book for MIMO

+ TX and RX share the same code book for
pre-coding unitary matrices

* An address in the code book is only
feedback from RX to TX

» Haussholder transformation can be used
for successive reduction of vector size
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MIMO precoding system

Transmitter Receiver
; {E ,\\-\[3— BT sl
:hh. T“ IFFT "—Q{r oy \
3 T\
X, J
Al N
| Codsbosk Inde foadback
X':fransmitsignal  H: charmel matrix
y : Teceive signal § : original transmit signal
) N :noise
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T T TIT

H  *The performance of two
- eigenmodes in closed-
% 5 loop system is shown
» : separately.

a * The performance of
eigen #1 is the best.

Bit error rate

s 0 15 2
Average SNR per recieve anterna
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Throughput performance

T =% 7*_:. t A —
1 FAY
Nl =
Bifhaas Vg * When SNRis 30d8,
- | e W throughput performance
& - ;\"w vt ) A A 2 of closed loop system is
E, me 24PeE | Sttt | better open loop than
H N Moo el iavidronsorrsdrecdes |  throughput regardless of
% ] 4 ‘\\‘ \ MS velocity.
H i * When SNR is 20dB or
= i .,\ TSYK=T 10dB, throughput
=tpte g gaugigiigeltaedeeroposedosenes performance is different
e MY A by MS velocity.
S s s S e e A~ .
I s
E W X Mo & W M
Velocity[kmh]
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Differential codebook

> The transmitter computes the precoding matrix by using the
codebook matrix specified by the receiver and the previous
precoding matrix

| F=C, . J

> The receiver selects the optimmum precoding matrix which
maximizes the capacit
£ ™

{ P il i)
™M,y =arg maxlog, detg I, +o‘2‘\‘" HC, C_H, I

fcimcn={eF . C,F.}
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Results (Differential codebook)

@
-
Fi
T e
]
=
s
4 s 6 7 o 4 X 12 16
ZER i Average SNR (dB)
Fig$ : Capacity vx. Codebook size Fig 5 = Capacity vs. SNR(fo=5.55}1z)
2011/05/16 Wireless Communication 79

Engineering I

Conclusion

* MIMO is a key technology for future
wireless communication system.

» Feedback of Channel State Information is
a necessary task.

» Design of MIMO transceivers is a
challenging theme for RF engineers and
Antenna engineers

» Switched MIMO transceiver is a promising
candidate for compact architecture.
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