Information Security and Cryptography for Communications and Network

Agenda

- Classical Cryptography
- Shannon's Theory
- The Data Encryption Standard (DES)
- The RSA System and Factoring
- Other Public-key Cryptography
- Signature Schemes

2012/07/20

Wireless Communication Engineering I

Agenda (2)

- Hash Functions
- Key Distribution and Key Agreement
- Identification Schemes
- Authentication Codes
- Secret Sharing Schemes
- Pseudo-random Number Generation
- Zero-knowledge Proofs
- Power Analysis

2012/07/20

Wireless Communication Engineering I

Cryptosystem

A cryptosystem is a five-tuple (P, C, K, E, D), where the following conditions are satisfied:

- 1. P is a finite set of possible plaintexts
- 2. C is a finite set of possible cipher-texts
- 3. K, the key-space, is a finite set of possible keys

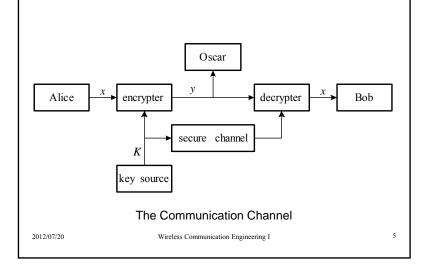
2012/07/20

Wireless Communication Engineering I

4. For each $K \in K$, there is an encryption rule $e_K \in E$ and a corresponding decryption rule $d_K \in D$. Each $e_K : P \to C$ and $d_K : C \to P$ are functions such that $d_K(e_K(x)) = x$ for every plaintext $x \in P$.

2012/07/20

Wireless Communication Engineering I



Let $P = C = K = \mathbb{Z}_{26}$. For $0 \le K \le 25$, define

$$e_K(x) = x + K \bmod 26$$

and

$$d_K(y) = y - K \mod 26$$

 $\big|\big(x,y\in Z_{26}\big).$

Shift Cipher

2012/07/20

Wireless Communication Engineering I

Let $P=C=Z_{26}$. K consists of all possible permutations of the 26 symbols 0, 1, ..., 25. For each permutation $\pi \in K$, define

$$e_{\pi}(x) = \pi(x)$$
,

and define

$$d_{\pi}(y) = \pi^{-1}(y),$$

where π^{-1} is the inverse permutation to π .

Substitution Cipher

2012/07/20

Wireless Communication Engineering I

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose **X** and **Y** are random variables. We denote the probability that **X** takes on the value x by p(x), and the probability that **Y** takes on the value y by p(y). The joint probability p(x, y) is the probability that **X** takes on the value x and **Y** takes on the value y.

2012/07/20

Wireless Communication Engineering I

8

The conditional probability p(x|y) denotes the probability that **X** takes on the value x given that **Y** takes on the value y. The random variables **X** and **Y** are said to be independent if p(x, y) = p(x) p(y) for all possible values x of **X** and y of **Y**.

2012/07/20

Wireless Communication Engineering I

Joint probability can be related to conditional probability by the formula

$$p(x, y) = p(x|y)p(y).$$

Interchanging x and y, we have that

$$p(x, y) = p(y|x)p(x).$$

2012/07/20

Wireless Communication Engineering I

From these two expressions, we immediately obtain the following result, which is known as Bayes' Theorem.

Bayes' Theorem

If p(y) > 0, then

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}$$

2012/07/20

Wireless Communication Engineering I

Spurious Keys and Unicity Distance

Let (P, C, K, E, D) be a cryptosystem. Then

$$H(\mathbf{K}|\mathbf{C}) = H(\mathbf{K}) + H(\mathbf{P}) - H(\mathbf{C}).$$

First, observe that $H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{C}|\mathbf{K}, \mathbf{P}) + H(\mathbf{K}, \mathbf{P})$.

Now, the key and plaintext determine the ciphertext uniquely, since $y = e_K(x)$.

This implies that $H(\mathbf{C}|\mathbf{K}, \mathbf{P}) = 0$. Hence,

 $H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{K}, \mathbf{P})$. But **K** and **P** are independent, so $H(\mathbf{K}, \mathbf{P}) = H(\mathbf{K}) + H(\mathbf{P})$. Hence,

$$H(\mathbf{K}, \mathbf{P}, \mathbf{C}) = H(\mathbf{K}, \mathbf{P}) = H(\mathbf{K}) + H(\mathbf{P}).$$

2012/07/20

Wireless Communication Engineering I

12

 H_L measures the entropy per letter of the language L. A random language would have entropy $\log_2 |P|$.

So the quantity R_L measures the fraction of "excess characters," which we think of as redundancy.

2012/07/20

Wireless Communication Engineering I

Entropy of a natural language Suppose *L* is a natural language.

The entropy of L is defined to be the quantity

$$H_L = \lim_{n \to \infty} \frac{H(\mathbf{P}^n)}{n}$$

and the redundancy of L is defined to be

$$R_L = 1 - \frac{H_L}{\log_2 |P|}$$

2012/07/20

Wireless Communication Engineering I

13

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_0 , at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$n_0 \approx \frac{\log_2 |K|}{R_L \log_2 |P|}$$

2012/07/20

Wireless Communication Engineering I

DES

- 1. Given a plaintext x, a bit-string x_0 is constructed by permuting the bits of x according to a (fixed) initial permutation IP. We write $x_0 = IP(x) = L_0R_0$, where L_0 comprises the first 32 bits of x_0 and R_0 the last 32 bits.
- 2. 16 iterations of a certain function are then computed. We compute $L_i R_i$, $1 \le i \le 16$, according to the following rule:

$$\begin{split} L_i &= R_{i-1} \\ R_i &= L_{i-1} \oplus f \big(R_{i-1}, \, K_i \big) \end{split}$$

2012/07/20

Wireless Communication Engineering

where \oplus denotes the exclusive-or of two bit-strings. f is a function that we will describe later, and K_1 , K_2 , ..., K_{16} are each bit-strings of length 48 computed as a function of the key K. (Actually, each K_i is a permuted selection of bits from $K_1, K_2, ..., K_{16}$ comprises the key schedule.

One round of encryption is depicted in Figure 3.1

3. Apply the inverse permutation IP⁻¹ to the bit-string R_{16}^{11} L_{16} , obtaining the cipher-text y. That is, $y = IP^{-1}(R_{16} L_{16})$. Note the inverted order of L_{16} and R_{16} .

Wireless Communication Engineering I

R_{i-1} *K* : One round of DES encryption 2012/07/20 Wireless Communication Engineering I

Public-key Cryptography

- RSA: Difficulty of factoring large integers
- Knapsack: Difficulty of the subset sum problem
- McEliece: Difficulty of decoding a linear code
- ElGamal: Difficulty of the discrete logarithm problem for finite fields
- Elliptic Curve: Work in the domain of elliptic curves rather than finite fields

2012/07/20

Wireless Communication Engineering I

1. z = 1

2. for $i = \ell - 1$ down to 0 do

3. $z = z^2 \mod n$

4. if $b_i = 1$ then

 $z = z \times x \mod n$

The square-and-multiply algorithm to compute $x^b \mod n$

2012/07/20

Wireless Communication Engineering I

20

- 1. Bob generates two large primes, p and q
- 2. Bob computes n = pq and $\phi(n) = (p-1)(q-1)$
- 3. Bob chooses a random $b(1 < b < \phi(n))$ such that $gcd(b, \phi(n)) = 1$
- 4. Bob computes $a = b^{-1} \mod \phi(n)$ using the Euclidean algorithm
- 5. Bob publishes n and b in a directory as his public key.

Setting up RSA

2012/07/20

Wireless Communication Engineering I

22

Let n = pq, where p and q are primes. Let $P = C = Z_n$, and define

 $K = \{(n, p, q, a, b) : n = pq, p, q \text{ prime}, ab \equiv 1 \pmod{\phi(n)}\}$

For K = (n, p, q, a, b), define

 $e_K(x) = x^b \mod n$

and

 $d_K(y) = y^a \mod n$

 $(x, y \in Z_n)$ The values n and b are public, and the values p, q, a are secret

RSA Cryptosystem

2012/07/20

Wireless Communication Engineering I

21

ElGamal Cryptosystem and Discrete Logs

Problem Instance

 $I = (p, \alpha, \beta)$, where p is prime, $\alpha \in \mathbb{Z}_p$ is a primitive element, and $\beta \in \mathbb{Z}_p^*$.

Objective

Find the unique integer a, $0 \le a \le p-2$ such that

$$\alpha^a \equiv \beta \pmod{p}$$

We will denote this integer a by $\log_{\alpha} \beta$.

2012/07/20

Wireless Communication Engineering I

Let p be a prime such that the discrete log problem in Z_p is intractable, and let $\alpha \in Z_p^*$ be a primitive element.

Let
$$P = Z_p^*$$
, $C = Z_p^* \times Z_p^*$, and define

$$K = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}$$

The values p, α and β are public, and a is secret.

For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}$, define

$$e_K(x,k) = (y_1, y_2)$$

2012/07/20

Wireless Communication Engineering I

24

where

$$y_1 = \alpha^k \mod p$$

and

$$y_2 = x\beta^k \bmod p$$

For $y_1, y_2 \in \mathbb{Z}_p^*$, define

$$d_K(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$$

2012/07/20

Wireless Communication Engineering I

25

Let *G* be a generating matrix for an [n, k, d] Goppa code \mathbb{C} , where $n = 2^m$, d = 2t + 1 and k = n - mt. Let *S* be a matrix that is invertible over \mathbb{Z}_2 , let *P* be $n \times n$ an permutation matrix, and let G' = SGP. Let $P = (\mathbb{Z}_2)^k$, $C = (\mathbb{Z}_2)^n$, and let

$$K = \{(G, S, P, G')\}$$

where G, S, P, and G' are constructed as described above. G' is public, and G, S, and P are secret.

For K = (G, S, P, G'), define $e_K(\mathbf{x}, \mathbf{e}) = \mathbf{x}G' + \mathbf{e}$

McEliece Cryptosystem

2012/07/20

Wireless Communication Engineering I

26

where $\mathbf{e} \in (\mathbf{Z}_2)^n$ is a random vector of weight t.

Bob decrypts a ciphertext $\mathbf{y} \in (\mathbf{Z}_2)^n$ by means of the following operations:

- 1. Compute $\mathbf{y}_1 = \mathbf{y}P^{-1}$.
- 2. Decode \mathbf{y}_1 , obtaining $\mathbf{y}_1 = \mathbf{x}_1 + \mathbf{e}_1$, where $\mathbf{x}_1 \in \mathbf{C}$.
- 3. Compute $\mathbf{x}_0 \in (\mathbf{Z}_2)^k$ such that $\mathbf{x}_0 G = \mathbf{x}_1$.
- 4. Compute $\mathbf{x} = \mathbf{x}_0 S^{-1}$.

2012/07/20

Wireless Communication Engineering I

Signature Schemes

A signature scheme is a five-tuple (P, A, K, S, V), where the following conditions are satisfied:

- 1. P is a finite set of possible messages
- 2. A is a finite set of possible signatures
- 3. K, the key-space, is a finite set of possible keys

2012/07/20

Wireless Communication Engineering I

28

Let n=pq, where p and q are primes. Let $\mathcal{P}=\mathcal{A}=\mathbb{Z}_n$, and define

$$\mathcal{K} = \{(n, p, q, a, b) : n = pq, p, q \text{ prime}, ab \equiv 1 \pmod{\phi(n)}\}.$$

The values n and b are public, and the values p, q, a are secret.

For K = (n, p, q, a, b), define

$$sig_K(x) = x^a \mod n$$

and

$$ver_K(x,y) = true \Leftrightarrow x \equiv y^b \pmod{n}$$

 $(x, y \in \mathbb{Z}_n).$

RSA Signature Scheme

2012/07/20

Wireless Communication Engineering I

4. For each $K \in K$, there is a signing algorithm $sig_K \in S$ and a corresponding verification algorithm $ver_K \in V$. Each $sig_K : P \rightarrow A$ and $ver_K : P \times A \rightarrow \{\text{true, false}\}$ are functions such that the following equation is satisfied for every message $x \in P$ and for every signature $y \in A$:

$$ver(x, y) = \begin{cases} true & if \quad y = sig(x) \\ false & if \quad y \neq sig(x) \end{cases}$$

2012/07/20

Wireless Communication Engineering I

29

Let p be a prime such that the discrete log problem in \mathbb{Z}_p is intractable, and let $\alpha \in \mathbb{Z}_p^*$ be a primitive element. Let $\mathcal{P} = \mathbb{Z}_p^*$, $\mathcal{A} = \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$, and define

$$\mathcal{K} = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}.$$

The values p, α and β are public, and a is secret.

For $K = (p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}^*$, define

$$sig_K(x, k) = (\gamma, \delta),$$

where

$$\gamma = \alpha^k \mod p$$

and

$$\delta = (x - a\gamma)k^{-1} \bmod (p - 1).$$

For $x, \gamma \in \mathbb{Z}_p^*$ and $\delta \in \mathbb{Z}_{p-1}$, define

$$ver_K(x, \gamma, \delta) = true \Leftrightarrow \beta^{\gamma} \gamma^{\delta} \equiv \alpha^x \pmod{p}$$
.

ElGamal Signature Scheme

2012/07/20

Wireless Communication Engineering I

Let p be a 512-bit prime such that the discrete log problem in \mathbb{Z}_p is intractible, and let q be a 160-bit prime that divides p-1. Let $\alpha \in \mathbb{Z}_p^*$ be a qth root of 1 modulo p. Let $\mathcal{P} = \mathbb{Z}_q^*$, $\mathcal{A} = \mathbb{Z}_q \times \mathbb{Z}_q$, and define

$$K = \{(p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}.$$

The values p, q, α and β are public, and a is secret.

For $K=(p,q,\alpha,a,\beta)$, and for a (secret) random number $k,\,1\leq k\leq q-1$, define

$$sig_K(x, k) = (\gamma, \delta),$$

where

$$\gamma = (\alpha^k \mod p) \mod q$$

and

$$\delta = (x + a\gamma)k^{-1} \mod q$$
.

For $x \in \mathbb{Z}_q^*$ and $\gamma, \delta \in \mathbb{Z}_q$, verification is done by performing the following computations:

$$e_1 \,=\, x\delta^{-1} \bmod q$$

$$e_2 = \gamma \delta^{-1} \mod q$$

 $\operatorname{ver}_K(x,\gamma,\delta)=\operatorname{true}\Leftrightarrow (\alpha^{e_1}\beta^{e_2} \bmod p) \bmod q=\gamma.$

DSS (Digital Signature Standard)

2012/07/20 Wireless Communication Engineering I

32

Let p=2q+1 be a prime such that q is prime and the discrete log problem in \mathbb{Z}_p is intractible. Let $\alpha\in\mathbb{Z}_p^*$ be an element of order q. Let $1\leq a\leq q-1$ and define $\beta=\alpha^a \mod p$. Let G denote the multiplicative subgroup of \mathbb{Z}_p^* of order q (G consists of the quadratic residues modulo p). Let $\mathcal{P}=\mathcal{A}=G$, and define

$$K = \{(p, \alpha, a, \beta) : \beta \equiv \alpha^a \pmod{p}\}.$$

The values p, α and β are public, and a is secret.

For $K = (p, \alpha, a, \beta)$ and $x \in G$, define

$$y = sig_K(x) = x^a \mod p$$
.

For $x, y \in G$, verification is done by executing the following protocol:

- 1. Alice chooses e_1, e_2 at random, $e_1, e_2 \in \mathbb{Z}_q^*$.
- 2. Alice computes $c = y^{e_1}\beta^{e_2} \mod p$ and sends it to Bob.
- 3. Bob computes $d = c^{a^{-1} \mod q} \mod p$ and sends it to Alice.
- 4. Alice accepts y as a valid signature if and only if

$$d \equiv x^{e_1} \alpha^{e_2} \pmod{p}$$
.

Undeniable Signature Scheme

2012/07/20 Wireless Communication Engineering I

33

Hash Functions

message x arbitrary length \downarrow message digest z = h(x) 160 bits

320 bits

signature $y = sig_{\kappa}(z)$

Signing a message digest

2012/07/20 Wireless Communication Engineering I

Suppose p is a large prime and q=(p-1)/2 is also prime. Let α and β be two primitive elements of \mathbb{Z}_p . The value $\log_{\alpha}\beta$ is not public, and we assume that it is computationally infeasible to compute its value.

The hash function

$$h: \{0, \ldots, q-1\} \times \{0, \ldots, q-1\} \to \mathbb{Z}_p \setminus \{0\}$$

is defined as follows:

$$h(x_1, x_2) = \alpha^{x_1} \beta^{x_2} \bmod p.$$

Chaum-van Heijst-Pfitzmann Hash Function

2012/07/20 Wireless Communication Engineering I

```
    A = 67452301 (hex)

    B = efcdab89 \text{ (hex)}
    C = 98badcfe (hex)
    D = 10325476 \text{ (hex)}
2. for i = 0 to N/16 - 1 do
3.
        for i = 0 to 15 do
            X[j] = M[16i + j]
        BB = B
        CC = C
        DD = D
        Round1
6.
        Round2
7.
        Round3
8.
        A = A + AA
        B = B + BB
        C = C + CC
        D = D + DD
```

The MD4 Hash Function

Wireless Communication Engineering I

36

38

2012/07/20

2012/07/20

2012/07/20

```
1. A = (A + g(B, C, D) + X[0] + 5A827999) \ll 3
2. D = (D + g(A, B, C) + X[4] + 5A827999) \ll 5
3. C = (C + g(D, A, B) + X[8] + 5A827999) \ll 9
4. B = (B + g(C, D, A) + X[12] + 5A827999) \iff 13
5. A = (A + g(B, C, D) + X[1] + 5A827999) \ll 3
6. D = (D + g(A, B, C) + X[5] + 5A827999) \ll 5
7. C = (C + g(D, A, B) + X[9] + 5A827999) \ll 9
8. B = (B + g(C, D, A) + X[13] + 5A827999) \ll 13
9. A = (A + g(B, C, D) + X[2] + 5A827999) \ll 3
10. D = (D + g(A, B, C) + X[6] + 5A827999) \ll 5
11. C = (C + g(D, A, B) + X[10] + 5A827999) \ll 9
12. B = (B + g(C, D, A) + X[14] + 5A827999) \ll 13
13. A = (A + g(B, C, D) + X[3] + 5A827999) \ll 3
14. D = (D + g(A, B, C) + X[7] + 5A827999) \ll 5
15. C = (C + g(D, A, B) + X[11] + 5A827999) \ll 9
16. B = (B + g(C, D, A) + X[15] + 5A827999) \ll 13
                         Round 2
```

Wireless Communication Engineering I

```
1. A = (A + f(B, C, D) + X[0]) \ll 3
   2. D = (D + f(A, B, C) + X[1]) \ll 7
   3. C = (C + f(D, A, B) + X[2]) \ll 11
   4. B = (B + f(C, D, A) + X[3]) \ll 19
   5. A = (A + f(B, C, D) + X[4]) \ll 3
   6. D = (D + f(A, B, C) + X[5]) \ll 7
   7. C = (C + f(D, A, B) + X[6]) \ll 11
   8. B = (B + f(C, D, A) + X[7]) \ll 19
   9. A = (A + f(B, C, D) + X[8]) \ll 3
    10. D = (D + f(A, B, C) + X[9]) \ll 7
   11. C = (C + f(D, A, B) + X[10]) \ll 11
   12. B = (B + f(C, D, A) + X[11]) \ll 19
   13. A = (A + f(B, C, D) + X[12]) \ll 3
    14. D = (D + f(A, B, C) + X[13]) \ll 7
   15. C = (C + f(D, A, B) + X[14]) \ll 11
    16. B = (B + f(C, D, A) + X[15]) \ll 19
                              Round 1
2012/07/20
                                                                   37
                        Wireless Communication Engineering I
```

```
1. A = (A + h(B, C, D) + X[0] + 6ED9EBA1) \ll 3
2. D = (D + h(A, B, C) + X[8] + 6ED9EBA1) \ll 9
3. C = (C + h(D, A, B) + X[4] + 6ED9EBA1) \ll 11
4. B = (B + h(C, D, A) + X[12] + 6ED9EBA1) \ll 15
5. A = (A + h(B, C, D) + X[2] + 6ED9EBA1) \ll 3
6. D = (D + h(A, B, C) + X[10] + 6ED9EBA1) \ll 9
7. C = (C + h(D, A, B) + X[6] + 6ED9EBA1) \ll 11
8. B = (B + h(C, D, A) + X[14] + 6ED9EBA1) \ll 15
9. A = (A + h(B, C, D) + X[1] + 6ED9EBA1) \ll 3
10. D = (D + h(A, B, C) + X[9] + 6ED9EBA1) \le 9
11. C = (C + h(D, A, B) + X[5] + 6ED9EBA1) \ll 11
12. B = (B + h(C, D, A) + X[13] + 6ED9EBA1) \ll 15
13. A = (A + h(B, C, D) + X[3] + 6ED9EBA1) \ll 3
14. D = (D + h(A, B, C) + X[11] + 6ED9EBA1) \ll 9
15. C = (C + h(D, A, B) + X[7] + 6ED9EBA1) \ll 11
16. B = (B + h(C, D, A) + X[15] + 6ED9EBA1) \ll 15
                        Round 3
```

Wireless Communication Engineering I

Time-stamping

- 1. Bob computes z = h(x)
- 2. Bob computes z' = h(z || pub)
- 3. Bob computes $y = sig_K(z')$
- 4. Bob publishes (*z*, *pub*, *y*) in the next day's newspaper.

2012/07/20

Wireless Communication Engineering I

40

Key Pre-distribution

- 1. A prime p and a primitive element $\alpha \in \mathbb{Z}_p^*$ are made public.
- 2. V computes

$$K_{U,V} = \alpha^{a_U a_V} \mod p = b_U^{a_V} \mod p$$
,

using the public value $b_{\rm U}$ from U's certificate, together with his own secret value $a_{\rm V}$.

3. U computes

$$K_{\mathrm{U},\mathrm{V}} = \alpha^{a_{\mathrm{U}}a_{\mathrm{V}}} \mod p = b_{\mathrm{V}}^{a_{\mathrm{U}}} \mod p,$$

using the public value $b_{\rm V}$ from V's certificate, together with her own secret value $a_{\rm U}$.

2012/07/20

Wireless Communication Engineering I

41

Identification Schemes

- 1. Bob chooses a *challenge*, x, which is a random 64-bit string. Bob sends x to Alice.
- 2. Alice computes

$$y = e_K(x)$$

and sends it to Bob.

3. Bob computes

$$y' = e_K(x)$$

and verifies that y' = y.

Challenge-and-response protocol

2012/07/20

Wireless Communication Engineering I

Authentication Codes

An authentication code is a four-tuple (S, A, K, E), where the following conditions are satisfied:

- 1. S is a finite set of possible source states
- 2. A is a finite set of possible authentication tags
- 3. K, the keyspace, is a finite set of possible keys
- 4. For each $K \in K$, there is an authentication rule $e_K: S \to A$.

2012/07/20

Wireless Communication Engineering I

Secret Sharing Schemes

Let t, w be positive integers, $t \le w$.

A (t, w)-threshold scheme is a method of sharing a key K among a set of w participants (denoted by P), in such a way that any t participants can compute the value of K, but no group of t-1 participants can do so.

2012/07/20

Wireless Communication Engineering I

44

Initialization Phase

1. D chooses w distinct, non-zero elements of \mathbb{Z}_p , denoted x_i , $1 \leq i \leq w$ (this is where we require $p \geq w+1$). For $1 \leq i \leq w$, D gives the value x_i to P_i . The values x_i are public.

Share Distribution

- 2. Suppose D wants to share a key $K \in \mathbb{Z}_p$. D secretly chooses (independently at random) t-1 elements of \mathbb{Z}_p , a_1, \ldots, a_{t-1} .
- 3. For $1 \le i \le w$, D computes $y_i = a(x_i)$, where

$$a(x) = K + \sum_{j=1}^{t-1} a_j x^j \bmod p.$$

4. For $1 \le i \le w$, D gives the share y_i to P_i .

Shamir (t, w)-threshold scheme

2012/07/20

Wireless Communication Engineering I

45

Pseudo-random Number Generation

Let k, ℓ be positive integers such that $\ell \ge k+1$ (where ℓ is a specified polynomial function of k).

A (k, ℓ) -pseudo-random bit generator (more briefly, a (k, ℓ) -PRBG) is a function $f: (Z_2)^k \to (Z_2)^\ell$ that can be computed in polynomial time (as a function of k). The input $s_0 \in (Z_2)^k$ is called the seed, and the output $f(s_0) \in (Z_2)^\ell$ is called a pseudo-random bit-string.

2012/07/20

Wireless Communication Engineering I

46

Let $M \ge 2$ be an integer, and let $1 \le a, b \le M - 1$. Define $k = \lceil \log_2 M \rceil$ and let $k + 1 \le \ell \le M - 1$. For a seed s_0 , where $0 \le s_0 \le M - 1$, define

$$s_i = (as_{i-1} + b) \bmod M$$

2012/07/20 Wireless Communication Engineering I

for $1 \le i \le \ell$, and then define

$$f(s_0)=(z_1, z_2,..., z_\ell),$$

where

$$z_i = s_i \mod 2$$
.

 $1 \le i \le \ell$. Then f is a (k, ℓ) -Linear Congruential Generator.

Linear Congruential Generator

2012/07/20

Wireless Communication Engineering I

48

Input: an integer n with unknown factorization n = pq, where p and q are prime, and $x \in QR(n)$

- 1. Repeat the following steps $\log_2 n$ times:
- 2. Peggy chooses a random $v \in \mathbb{Z}_n^*$ and computes

$$y = v^2 \mod n$$
.

Peggy sends y to Vic.

3. Vic chooses a random integer i = 0 or 1 and sends it to Peggy.

2012/07/20

Wireless Communication Engineering I

50

Zero-knowledge Proofs

Completeness

If x is a yes-instance of the decision problem, then Vic will always accept Peggy's proof.

Soundness

If x is a no-instance of, then the probability that Vic accepts the proof is very small.

2012/07/20

Wireless Communication Engineering I

4. Peggy computes

$$z = u^i v \mod n$$
.

where u is a square root of x, and sends z to Vic.

5. Vic checks to see if

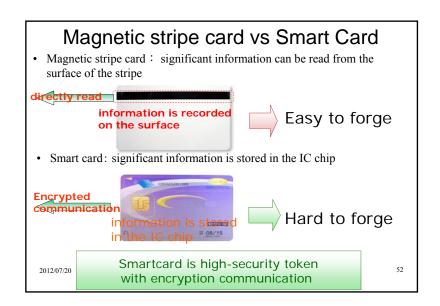
$$z^2 \equiv x^i y \pmod{n}$$
.

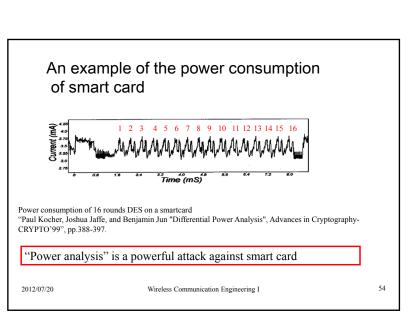
6. Vic accepts Peggy's proof if the computation of step 5 is verified in each of the $\log_2 n$ rounds.

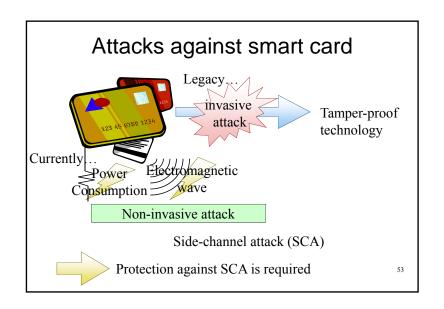
A perfect zero-knowledge interactive proof system for Quadratic Residues

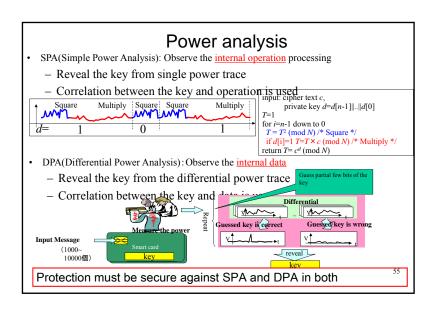
2012/07/20

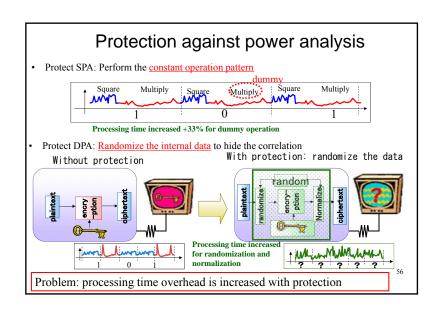
Wireless Communication Engineering I











Protection against DPA

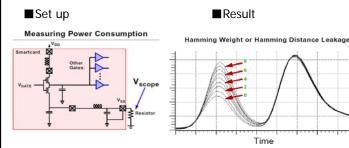
- Reduce the signal
 - Represent the data without hamming weight difference e.g. 0→01, 1→1
 - Circuit size is increased
- · Increase the noise
 - Add the noise generator circuit.
 - Protection is deactivated by increasing the number of the power consumption data
- · Duplicate the data
 - Duplicate the intermediate data M into two random data M_1 and M_2 satisfying $M\!\!=\!\!M_1\!\!\oplus\!\!M_2$
 - Processing time/circuit size is increased
- · Update date the cryptographic key with certain period
 - If the key before is updated enough number of the power consumption data is collected, the attack is avoided.

2012/07/20

Wireless Communication Engineering I

58

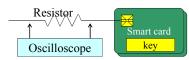
Data hamming weight and power consumption



Power consumption grows in proportion with the hamming weight of the data (for certain IC chips)

From the paper of T.S.Messerges http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf

Power analysis



- Reveal the cryptographic key stored in the smart card by observing the power consumption(Kocher, 1998)
- Power consumption shows internal operation and data value in the smart card, which are related with the key
- Simple and powerful attack
 - Just add a resistor to Vcc of IC chip
 - Instrument is low-cost (Digital oscilloscope)

This attack is possible even when the implemented cryptographic algorithm is mathematically secure

→Extra security protection mechanism must be implemented