Information Security and Cryptography for Communications and Network

Agenda

- Classical Cryptography
- Shannon's Theory
- The Data Encryption Standard (DES)
- The RSA System and Factoring
- Other Public-key Cryptography
- Signature Schemes

Cryptosystem

A cryptosystem is a five-tuple ($\boldsymbol{P}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D}$), where the following conditions are satisfied:

1. \boldsymbol{P} is a finite set of possible plaintexts
2. C is a finite set of possible cipher-texts
3. \boldsymbol{K}, the key-space, is a finite set of possible keys
4. For each $K \in K$, there is an encryption rule $e_{K} \in E$ and a corresponding decryption rule $d_{K} \in D$. Each $e_{K}: \boldsymbol{P} \rightarrow \boldsymbol{C}$ and $d_{K}: \boldsymbol{C} \rightarrow \boldsymbol{P}$ are functions such that $d_{K}\left(e_{K}(x)\right)=x$ for every plaintext $x \in P$.

The Communication Channel
Wireless Communication Enginering 1

Let $P=C=\mathrm{Z}_{26}$. K consists of all possible permutations of the 26 symbols $0,1, \ldots, 25$. For each permutation $\pi \in K$, define

$$
e_{\pi}(x)=\pi(x)
$$

and define

$$
d_{\pi}(y)=\pi^{-1}(y)
$$

where π^{-1} is the inverse permutation to π.

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose \mathbf{X} and \mathbf{Y} are random variables. We denote the probability that \mathbf{X} takes on the value x by $p(x)$, and the probability that \mathbf{Y} takes on the value y by $p(y)$. The joint probability $p(x, y)$ is the probability that \mathbf{X} takes on the value x and \mathbf{Y} takes on the value y.

From these two expressions, we immediately obtain the following result, which is known as Bayes'
Theorem.
Bayes' Theorem
If $p(y)>0$, then

$$
p(x \mid y)=\frac{p(x) p(y \mid x)}{p(y)}
$$

Spurious Keys and Unicity Distance

Let $(\boldsymbol{P}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})$ be a cryptosystem. Then

$$
H(\mathbf{K} \mid \mathbf{C})=H(\mathbf{K})+H(\mathbf{p})-H(\mathbf{C})
$$

First, observe that $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})+H(\mathbf{K}, \mathbf{P})$.
Now, the key and plaintext determine the ciphertext uniquely, since $y=e_{K}(x)$.
This implies that $H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})=0$. Hence,
$H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})$. But \mathbf{K} and \mathbf{P} are independent, so $H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})$. Hence,

$$
H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})
$$

2012/07/20
Wireless Communication Engineering I
H_{L} measures the entropy per letter of the language L. A random language would have entropy $\log _{2}|\boldsymbol{P}|$.

So the quantity R_{L} measures the fraction of "excess characters," which we think of as redundancy.

Entropy of a natural language

Suppose L is a natural language.
The entropy of L is defined to be the quantity

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(\mathbf{P}^{n}\right)}{n}
$$

and the redundancy of L is defined to be

$$
R_{L}=1-\frac{H_{L}}{\log _{2}|P|}
$$

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_{0}, at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$
n_{0} \approx \frac{\log _{2}|K|}{R_{L} \log _{2}|P|}
$$

DES

1. Given a plaintext x, a bit-string x_{0} is constructed by permuting the bits of x according to a (fixed) initial permutation IP. We write $x_{0}=\operatorname{IP}(x)=L_{0} R_{0}$, where L_{0} comprises the first 32 bits of x_{0} and R_{0} the last 32 bits.
2. 16 iterations of a certain function are then computed. We compute $L_{i} R_{i}, 1 \leq i \leq 16$, according to the following rule:

$$
\begin{aligned}
L_{i} & =R_{i-1} \\
R_{i} & =L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

One round of DES encryption
where \oplus denotes the exclusive-or of two bit-strings. f is a function that we will describe later, and K_{1}, K_{2}, \ldots, K_{16} are each bit-strings of length 48 computed as a function of the key K. (Actually, each K_{i} is a permuted selection of bits from K.) $K_{1}, K_{2}, \ldots, K_{16}$ comprises the key schedule.
One round of encryption is depicted in Figure 3.1
3. Apply the inverse permutation IP^{-1} to the bit-string $R_{16} L_{16}$, obtaining the cipher-text y.
That is, $y=\mathrm{IP}^{-1}\left(R_{16} L_{16}\right)$. Note the inverted order of L_{16} and R_{16}.

Public-key Cryptography

- RSA: Difficulty of factoring large integers
- Knapsack: Difficulty of the subset sum problem
- McEliece: Difficulty of decoding a linear code
- ElGamal: Difficulty of the discrete logarithm problem for finite fields
- Elliptic Curve: Work in the domain of elliptic curves rather than finite fields

$$
\begin{aligned}
& \text { 1. } z=1 \\
& \text { 2. for } i=\ell-1 \text { down to } 0 \text { do } \\
& \text { 3. } z=z^{2} \bmod n \\
& \text { 4. if } b_{i}=1 \text { then } \\
& z=z \times x \bmod n
\end{aligned}
$$

The square-and-multiply algorithm to compute $x^{b} \bmod n$

$$
\begin{aligned}
& \text { Let } n=p q \text {, where } p \text { and } q \text { are primes. Let } \boldsymbol{P}=\boldsymbol{C}=\mathrm{Z}_{n} \text {, and define } \\
& \qquad K=\{(n, p, q, a, b): n=p q, p, q \text { prime, } a b \equiv 1(\bmod \phi(n))\} \\
& \text { For } K=(n, p, q, a, b) \text {, define } \\
& \qquad e_{K}(x)=x^{b} \bmod n \\
& \text { and } \\
& \qquad d_{K}(y)=y^{a} \bmod n
\end{aligned}
$$

$\left(x, y \in Z_{n}\right)$ The values n and b are public, and the values p, q, a are secret.

ElGamal Cryptosystem and Discrete Logs

Problem Instance

$I=(p, \alpha, \beta)$, where p is prime, $\alpha \in \mathrm{Z}_{p}$ is a primitive element, and $\beta \in \mathrm{Z}_{p}{ }^{*}$.

Objective
Find the unique integer $a, 0 \leq a \leq p-2$ such that

$$
\alpha^{a} \equiv \beta(\bmod p)
$$

We will denote this integer a by $\log _{\alpha} \beta$.
2012/07/20 Wireless Communication Engineering I ${ }^{23}$

Let p be a prime such that the discrete \log problem in Z_{p} is intractable, and let $\alpha \in \mathrm{Z}_{p}{ }^{*}$ be a primitive element.
Let $P=\mathrm{Z}_{p}{ }^{*}, C=\mathrm{Z}_{p}{ }^{*} \times \mathrm{Z}_{p}{ }^{*}$, and define

$$
K=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\}
$$

The values p, α and β are public, and a is secret.
For $K=(p, \alpha, a, \beta)$, and for a (secret) random number $k \in Z_{p-1}$, define

$$
e_{K}(x, k)=\left(y_{1}, y_{2}\right)
$$

where $\mathbf{e} \in\left(\mathrm{Z}_{2}\right)^{n}$ is a random vector of weight t.
Bob decrypts a ciphertext $\mathbf{y} \in\left(Z_{2}\right)^{n}$ by means of the following operations:

```
1. Compute }\mp@subsup{\mathbf{y}}{1}{}=\mathbf{y}\mp@subsup{P}{}{-1}\mathrm{ .
2. Decode }\mp@subsup{\mathbf{y}}{1}{}\mathrm{ , obtaining }\mp@subsup{\mathbf{y}}{1}{}=\mp@subsup{\mathbf{x}}{1}{}+\mp@subsup{\mathbf{e}}{1}{}\mathrm{ , where }\mp@subsup{\mathbf{x}}{1}{}\in\mathbf{C}\mathrm{ .
3. Compute }\mp@subsup{\mathbf{x}}{0}{}\in(\mp@subsup{\mathbf{Z}}{2}{}\mp@subsup{)}{}{k}\mathrm{ such that }\mp@subsup{\mathbf{x}}{0}{}G=\mp@subsup{\mathbf{x}}{1}{}\mathrm{ .
4. Compute }\mathbf{x}=\mp@subsup{\mathbf{x}}{0}{}\mp@subsup{S}{}{-1}\mathrm{ .
```

201207/20

Wireless Communication Enginering I
${ }^{27}$

Signature Schemes

A signature scheme is a five-tuple ($\boldsymbol{P}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{S}, \boldsymbol{V}$), where the following conditions are satisfied:

1. \boldsymbol{P} is a finite set of possible messages
2. \boldsymbol{A} is a finite set of possible signatures
3. \boldsymbol{K}, the key-space, is a finite set of possible keys
4. For each $K \in K$, there is a signing algorithm $\operatorname{sig}_{K} \in S$ and a corresponding verification algorithm ver $_{K} \in V$. Each $\operatorname{sig}_{K}: \boldsymbol{P} \rightarrow \boldsymbol{A}$ and ver $_{\mathrm{K}}: P \times A \xrightarrow{\mathrm{~K}}\{$ true, false $\}$ are functions such that the following equation is satisfied for every message $x \in P$ and for every signature $y \in A$

$$
\operatorname{ver}(x, y)=\left\{\begin{array}{lll}
\text { true } & \text { if } & y=\operatorname{sig}(x) \\
\text { false } & \text { if } & y \neq \operatorname{sig}(x)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Let } n=p q \text {, where } p \text { and } q \text { are primes. Let } \mathcal{P}=\mathcal{A}=\mathbb{Z}_{n} \text {, and define } \\
& \qquad \mathcal{K}=\{(n, p, q, a, b): n=p q, p, q \text { prime, } a b \equiv 1(\bmod \phi(n))\} .
\end{aligned}
$$

$\mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\}$.
The values p, α and β are public, and a is secret.
For $K=(p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathbb{Z}_{p-1}$. define

$$
\operatorname{sig}_{K}(x, k)=(\gamma, \delta),
$$

where

$$
\gamma=\alpha^{k} \bmod p
$$

and
$\delta=(x-a \gamma) k^{-1} \bmod (p-1)$.
For $x, \gamma \in \mathbb{Z}_{p}{ }^{*}$ and $\delta \in \mathbb{Z}_{p-1}$, define
$\left(x, y \in \mathbb{Z}_{n}\right)$.
$\operatorname{ver}_{K}(x, y)=$ true $\Leftrightarrow x \equiv y^{b}(\bmod n)$

RSA Signature Scheme
$\operatorname{ver}_{K}(x, \gamma, \delta)=\operatorname{true} \Leftrightarrow \beta^{\gamma} \gamma^{\delta} \equiv \alpha^{x}(\bmod p)$.
ElGamal Signature Scheme

```
Let p}\mathrm{ be a 512-bit prime such that the discrete log problem in Z}\mp@subsup{Z}{p}{}\mathrm{ is in
```

Let p}\mathrm{ be a 512-bit prime such that the discrete log problem in Z}\mp@subsup{Z}{p}{}\mathrm{ is in
a qth root of 1 modulo p. Let }\mathcal{P}=\mp@subsup{Z}{q}{*},\mathcal{A}=\mp@subsup{Z}{q}{}\times\mp@subsup{Z}{q}{\prime}\mathrm{ , and define
a qth root of 1 modulo p. Let }\mathcal{P}=\mp@subsup{Z}{q}{*},\mathcal{A}=\mp@subsup{Z}{q}{}\times\mp@subsup{Z}{q}{\prime}\mathrm{ , and define
K}={(p,q,\alpha,a,\beta):\beta\equiv\mp@subsup{\alpha}{}{\alpha}(\operatorname{mod}p)}
K}={(p,q,\alpha,a,\beta):\beta\equiv\mp@subsup{\alpha}{}{\alpha}(\operatorname{mod}p)}
The values p,q,\alpha and \beta}\mathrm{ are public, and }a\mathrm{ is secret.
The values p,q,\alpha and \beta}\mathrm{ are public, and }a\mathrm{ is secret.
For K}=(p,q,\alpha,a,\beta)\mathrm{ , and for a (secret) random number }k,1\leqk
For K}=(p,q,\alpha,a,\beta)\mathrm{ , and for a (secret) random number }k,1\leqk
q-1, define }\quad\mp@subsup{sig}{K}{}(x,k)=(\gamma,\delta)
q-1, define }\quad\mp@subsup{sig}{K}{}(x,k)=(\gamma,\delta)
where
where
where
where
\gamma=(\mp@subsup{\alpha}{}{k}\operatorname{mod}p)\operatorname{mod}q
\gamma=(\mp@subsup{\alpha}{}{k}\operatorname{mod}p)\operatorname{mod}q
and
and
\delta=(x+a\gamma)\mp@subsup{k}{}{-1}\operatorname{mod}q.
\delta=(x+a\gamma)\mp@subsup{k}{}{-1}\operatorname{mod}q.
For }x\in\mp@subsup{\mathbb{Z}}{q}{*}\mathrm{ *and }\gamma,\delta\in\mp@subsup{\mathbf{Z}}{q}{}\mathrm{ , verification is done by performing the fol-
For }x\in\mp@subsup{\mathbb{Z}}{q}{*}\mathrm{ *and }\gamma,\delta\in\mp@subsup{\mathbf{Z}}{q}{}\mathrm{ , verification is done by performing the fol-
e
e
e}\mp@subsup{e}{2}{}=\gamma\mp@subsup{\delta}{}{-1}\textrm{mod
e}\mp@subsup{e}{2}{}=\gamma\mp@subsup{\delta}{}{-1}\textrm{mod
ver}K(x,\gamma,\delta)=\mathrm{ true }\Leftrightarrow(\mp@subsup{\alpha}{}{\mp@subsup{e}{1}{}}\mp@subsup{\beta}{}{\mp@subsup{e殳}{2}{2}}\operatorname{mod}p)\operatorname{mod}q=

```
    ver}K(x,\gamma,\delta)=\mathrm{ true }\Leftrightarrow(\mp@subsup{\alpha}{}{\mp@subsup{e}{1}{}}\mp@subsup{\beta}{}{\mp@subsup{e殳}{2}{2}}\operatorname{mod}p)\operatorname{mod}q=
```

 DSS (Digital Signature Standard)


```
problem in \mp@subsup{\mathcal{Z}}{p}{}\mathrm{ is intractible. Let }\alpha\in\mp@subsup{\mathbb{Z}}{p}{*}\mp@subsup{|}{}{*}\mathrm{ be an element of order }q\mathrm{ . Le,}
I\leqa\leqq-1 and define \beta=\mp@subsup{\alpha}{}{a}\mathrm{ mod p. Let G denote the multiplicative}
ubgroup of }\mp@subsup{\mathbb{Z}}{p}{}\mp@subsup{}{}{*}\mathrm{ - of order }q\mathrm{ ( }G\mathrm{ consists of the quadratic residues modulo
p). Let }\mathcal{P}=\mathcal{A}=G\mathrm{ , and define
    \mathcal { K } = \{ ( p , \alpha , \alpha , \beta ) = \beta \equiv \alpha ^ { \alpha } ( \operatorname { m o d } p ) \}
The values p,\alpha and \beta}\mathrm{ are public, and }a\mathrm{ is secret.
For }K=(p,\alpha,a,\beta)\mathrm{ and }x\inG\mathrm{ , define
\[
y=s i g_{K}(x)=x^{a} \bmod p .
\]
For \(x, y \in G\), verification is done by executing the following protocol:
1. Alice chooses \(e_{1}, e_{2}\) at random, \(e_{1}, e_{2} \in \mathbb{Z}_{*^{*}}\)
2. Alice computes \(c=y^{e_{1}} \beta^{e_{2}} \bmod p\) and sends it to Bob.
3. Bob computes \(d=c^{a^{-1} \bmod q} \bmod p\) and sends it to Alice.
4. Alice accepts \(y\) as a valid signature if and only if
\(d \equiv x^{e_{1}} \alpha^{e_{2}}(\bmod p)\)
```

Undeniable Signature Scheme
201207/20
Wireless Communication Engineering

Suppose p is a large prime and $q=(p-1) / 2$ is also prime. Let α and β be two primitive elements of \mathbb{Z}_{p}. The value $\log _{\alpha} \beta$ is not public, and we assume that it is computationally infeasible to compute its value.
The hash function

$$
h:\{0, \ldots, q-1\} \times\{0, \ldots, q-1\} \rightarrow \mathbb{Z}_{p} \backslash\{0\}
$$

is defined as follows:

$$
h\left(x_{1}, x_{2}\right)=\alpha^{x_{1}} \beta^{x_{2}} \bmod p .
$$

Chaum-van Heijst-Pfitzmann Hash Function
Signing a message digest

```
A}=67452301(\mathrm{ (hex 
    B=efcdabs9 (hex)
    D=10325476 (hex)
2. fori}=0\mathrm{ to N/16-1 d
            for j}=0\mathrm{ to 15 do
        X[j]=M[16i+j]
    AA=A
    BB=B
    CC=C
    D =D
    Round1
    Round2
    A=A+AA
    B=B+BB
    C=C+CC
    D=D+DD
```

. $A=(A+h(B, C, D)+X[0]+6 E D 9 E B A 1) \lll 3$ $B=(B+g(C, D, A)+X[12]+5 A 827999) \lll 13$
$D=(D+h(A, B, C)+X[8]+6 E D 9 E B A 1) \lll 9$ 5. $\quad A=(A+g(B, C, D)+X[1]+5 A 827999) \lll 3$ $C=(C+h(D, A, B)+X[4]+6 E D 9 E B A 1) \lll 11$ 6. $\quad A=(A+g(B, C, D)+X[1]+5 A 827999) \lll 3$ $B=(B+h(C, D, A)+X[12]+6 E D 9 E B A 1) \lll 15$ 7. $\quad C=(C+g(D, A, B)+X[9]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[13]+5 A 827999) \lll 13$
$A=(A+h(B, C, D)+X[2]+6 E D 9 E B A 1) \lll 3$ $D=(D+h(A, B, C)+X[10]+6 E D 9 E B A 1) \lll 11$
$C=(C+h(D, A, B)+X[6]+6 E D 9 E B A 1) \lll 1$ $A=(A+g(B, C, D)+X[2]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[6]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[10]+5 A 827999) \lll 13$
$B=(B+g(C, D, A)+X[14]+5 A 827999) \lll 13$ $A=(A+g(B, C, D)+X[3]+5 A 827999) \lll 3$ $D=(D+g(A, B, C)+X[7]+5 A 827999) \lll 5$ $C=(C+g(D, A, B)+X[11]+5 A 827999) \lll 9$ $B=(B+g(C, D, A)+X[15]+5 A 827999) \lll 13$

```
A =(A+f(B,C,D)+X[0])<<<<
D. }D=(D+f(A,B,C)+X[1])<<<
. }C=(C+f(D,A,B)+X[2])<<<1
4. }B=(B+f(C,D,A)+X[3])<<<1
5. }A=(A+f(B,C,D)+X[4])<<<
6. }D=(D+f(A,B,C)+X[5])<<<
7. }C=(C+f(D,A,B)+X[6])<<<1
8. }B=(B+f(C,D,A)+X[7])<<<1
9. }A=(A+f(B,C,D)+X[8])<<<<
10. }D=(D+f(A,B,C)+X[9])<<<
11. }C=(C+f(D,A,B)+X[10])<<<1
12. }B=(B+f(C,D,A)+X[11])<<<1
13. }A=(A+f(B,C,D)+X[12])<<<
14. }D=(D+f(A,B,C)+X[13])<<
5. }C=(C+f(D,A,B)+X[14])<<<
6. }B=(B+f(C,D,A)+X[15])<<<1
```


Round 1

 \(C=(C+h(D, A, B)+X[6]+6 E D 9 E B A 1) \lll 11\)
 $B=(B+h(C, D, A)+X[14]+6 E D 9 E B A 1) \lll 15$
$B=(B+h(C, D, A)+X[14]+6 E D 9 E B A 1) \lll 15$
$A=(A+h(B, C, D)+X[1]+6 E D 9 E B A 1) \lll 3$
9. $A=(A+h(B, C, D)+X[1]+6 E D 9 E B A 1) \lll 3$
10. $D=(D+h(A, B, C)+X[9]+6 E D 9 E B A 1) \lll 9$
11. $C=(C+h(D, A, B)+X[5]+6 E D 9 E B A 1) \ll 11$
12. $B=(B+h(C, D, A)+X[13]+6 E D 9 E B A 1) \lll 3$
13. $A=(A+h(B, C, D)+X[3]+6 E D 9 E B A 1) \lll 3$
13. $A=(A+h(B, C, D)+X[3]+6 E D 9 E B A 1) \lll 3$
14. $D=(D+h(A, B, C)+X[11]+6 E D 9 E B A 1) \lll 9$
6. $B=(B+h(C, D, A)+X[15]+6 E D 9 E B A 1) \lll 15$

Round 3

20120720 Wireless Communication Enginering

Time-stamping

1. Bob computes $z=h(x)$
2. Bob computes $z^{\prime}=h(z \| p u b)$
3. Bob computes $y=\operatorname{sig}_{K}\left(z^{\prime}\right)$
4. Bob publishes $(z, p u b, y)$ in the next day's newspaper.

Authentication Codes

An authentication code is a four-tuple ($\boldsymbol{S}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{E}$), where the following conditions are satisfied:

1. \boldsymbol{S} is a finite set of possible source states
2. \boldsymbol{A} is a finite set of possible authentication tags
3. \boldsymbol{K}, the keyspace, is a finite set of possible keys
4. For each $K \in K$, there is an authentication rule $e_{K}: \boldsymbol{S} \rightarrow \boldsymbol{A}$.

Secret Sharing Schemes

Let t, w be positive integers, $t \leq w$.
A (t, w)-threshold scheme is a method of sharing a key K among a set of w participants (denoted by \boldsymbol{P}), in such a way that any t participants can compute the value of K, but no group of $t-1$ participants can do so.

Initialization Phase

1. $\quad D$ chooses w distinct, non-zero elements of \mathbb{Z}_{p}, denoted $x_{i}, 1 \leq i \leq$ w (this is where we require $p \geq w+1$). For $1 \leq i \leq w, D$ gives the value x_{i} to P_{i}. The values x_{i} are public.

Share Distribution

2. Suppose D wants to share a key $K \in \mathbb{Z}_{p}$. D secretly chooses (independently at random) $t-1$ elements of $\mathbb{Z}_{p}, a_{1}, \ldots, a_{t-1}$.
3. For $1 \leq i \leq w, D$ computes $y_{i}=a\left(x_{i}\right)$, where

$$
a(x)=K+\sum_{j=1}^{t-1} a_{j} x^{j} \bmod p
$$

4. For $1 \leq i \leq w, D$ gives the share y_{i} to P_{i}.

Shamir (t, w)-threshold scheme
2012/07/20
Wireless Communication Engineering I
45

Let $M \geq 2$ be an integer, and let $1 \leq a, b \leq M-1$. Define $k=\left\lceil\log _{2} M\right\rceil$ and let $k+1 \leq \ell \leq M-1$.
For a seed s_{0}, where $0 \leq s_{0} \leq M-1$, define

$$
s_{i}=\left(a s_{i-1}+b\right) \bmod M
$$

for $1 \leq i \leq \ell$, and then define

$$
f\left(s_{0}\right)=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)
$$

where

$$
z_{i}=s_{i} \bmod 2
$$

$1 \leq i \leq \ell$. Then f is a (k, ℓ)-Linear Congruential Generator.
Linear Congruential Generator
2012077/20
Wireless Communication Engineering I

- Completeness

If x is a yes-instance of the decision problem, then Vic will always accept Peggy's proof.

- Soundness

If x is a no-instance of, then the probability that Vic accepts the proof is very small.

Input: an integer n with unknown factorization $n=p q$,
where p and q are prime, and $x \in Q R(n)$

1. Repeat the following steps $\log _{2} n$ times:
2. Peggy chooses a random $v \in \mathrm{Z}_{n}{ }^{*}$ and computes

$$
y=v^{2} \bmod n
$$

Peggy sends y to Vic.
3. Vic chooses a random integer $i=0$ or 1 and sends it to Peggy.
4. Peggy computes

$$
z=u^{i} v \bmod n
$$

where u is a square root of x, and sends z to Vic.
5. Vic checks to see if

$$
z^{2} \equiv x^{i} y(\bmod n)
$$

6. Vic accepts Peggy's proof if the computation of step 5 is verified in each of the $\log _{2} n$ rounds.

A perfect zero-knowledge interactive proof system for Quadratic Residues

Magnetic stripe card vs Smart Card

- Magnetic stripe card : significant information can be read from the surface of the stripe

```
directly read
```

information is recorded on the surface \square Easy to forge

- Smart card: significant information is stored in the IC chip

$$
\begin{aligned}
& \text { Encrypted } \\
& \text { communication }
\end{aligned}
$$

An example of the power consumption of smart card

Power consumption of 16 rounds DES on a smartcard
aul Kocher, Joshua Jaffe, and Benjamin Jun "Differential Power Analysis", Advances in CryptographyCRYPTO'99', pp.388-397.
"Power analysis" is a powerful attack against smart card

201207/20
Wireless Communication Enginering 1

Attacks against smart card

Power analysis

- SPA(Simple Power Analysis): Observe the internal operation processing
- Reveal the key from single power trace
- Correlation between the key and operation is isut: cipher text c,

- DPA(Differential Power Analysis): Observe the internal data

Protection against power analysis

- Protect SPA: Perform the constant operation pattern

Data hamming weight and power consumption

Processing time increased $+33 \%$ for dummy operation

- Protect DPA: Randomize the internal data to hide the correlation

■ Set up
■Result

Hamming Weight or Hamming Distance Leakage

Power consumption grows in proportion with the hamming weight of the data (for certain IC chips)

From the paper of T.S.Messerges http://www.iccip.csl.uiuc.edu/conf/ceps/2000/messerges.pdf

Protection against DPA

- Reduce the signal
- Represent the data without hamming weight difference
e.g. $0 \rightarrow 01,1 \rightarrow 1$
- Circuit size is increased
- Increase the noise
- Add the noise generator circuit.
- Protection is deactivated by increasing the number of the power consumption data
- Duplicate the data
- Duplicate the intermediate data M into two random data M_{1} and M_{2} satisfying $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$
Processing time/circuit size is increased
- Update date the cryptographic key with certain period
- If the key before is updated enough number of the power consumption data is collected, the attack is avoided.
2012/07/20
Wireless Communication Engineering 1

Power analysis

- Reveal the cryptographic key stored in the smart card by observing the power consumption(Kocher, 1998)
- Power consumption shows internal operation and data value in the smart card, which are related with the key
- Simple and powerful attack
- Just add a resistor to Vcc of IC chip
- Instrument is low-cost (Digital oscilloscope)

This attack is possible even when the implemented cryptographic algorithm is mathematically secure
\rightarrow Extra security protection mechanism must be implemented

