シャープレイ値の応用

費用分担への応用

投票による意思決定への応用

費用分担ゲーム

練習問題2-3

同じ方向に家のあるA, B, Cの3人が大岡山駅からタクシーに相乗りし一番遠くに家のあるCが料金を支払っておき, 翌日清算することにした。メーターでは, Aの家までは1200円, Bの家までは2000円であり, 最終的にCの家までは, 2500円かかった。シャープレイ値の考え方に従えば, A及びBは, 翌日いくらずつCに支払えばよいか。また, 仁の考え方ではどうか。

特性関数(費用軽減量)

$$v(ABC) = (1200+2000+2500)-2500=3200$$

 $v(AB) = (1200+2000)-2000 = 1200, v(AC) = 1200, v(BC) = 2000$
 $v(A) = v(B) = v(C) = 0$

費用分担ゲーム

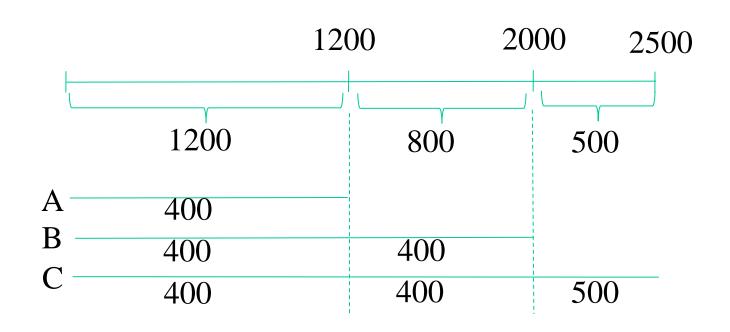
特性関数(費用軽減量)

$$v(ABC) = 3200, \ v(AB) = 1200, \ v(AC) = 1200, \ v(BC) = 2000$$

 $v(A) = v(B) = v(C) = 0$

貢献度

	A	В	C	
$A \leftarrow B \leftarrow C$	0	1200	2000	シャープレイ値
$A \leftarrow C \leftarrow B$	0	2000	1200	(800, 1200, 1200)
$B\leftarrow A\leftarrow C$	1200	0	2000	(,
$B\leftarrow C\leftarrow A$	1200	0	2000	弗四八切
$C\leftarrow A\leftarrow B$	1200	2000	0	費用分担
$C\leftarrow B\leftarrow A$	1200	2000	0	(400, 800, 1300)
	4800/6	7200/6	7200/6	


費用分担ゲーム

特性関数(費用軽減量)

$$v(ABC) = 3200, \ v(AB) = 1200, \ v(AC) = 1200, \ v(BC) = 2000$$

 $v(A) = v(B) = v(C) = 0$

シャープレイ値 (800, 1200, 1200)

費用分担 (400, 800, 1300)

節約ゲームと費用ゲーム

節約ゲーム(費用軽減量)

$$v(ABC) = 3200$$
, $v(AB) = 1200$, $v(AC) = 1200$, $v(BC) = 2000$
 $v(A) = v(B) = v(C) = 0$

費用ゲーム(費用)

$$C(ABC) = 2500$$
, $C(AB) = 2000$, $C(AC) = 2500$, $C(BC) = 2500$
 $C(A) = 1200$, $C(B) = 2000$, $C(C) = 2500$

$$v(S) = \sum_{i \in S} C(\{i\}) - C(S)$$
 $x_i = C(\{i\}) - c_i \ i = A, B, C$

$$(c_A, c_B, c_C) \in C$$
 での コア $\leftrightarrow \Sigma_{i \in S} c_i \leq C(S) \ \forall \ S \subseteq \{A, B, C\}$

$$\Sigma_{i \in S} c_i \leq C(S) \iff \Sigma_{i \in S} C(\{i\}) - \Sigma_{i \in S} x_i \leq C(S)$$
$$\iff \Sigma_{i \in S} x \geq \Sigma_{i \in S} C(\{i\}) - C(S)_i = v(S)$$

シャープレイ値 v 費用軽減 (800, 1200, 1200) C 費用 (400, 800, 1300)

滑走路の補修費用の分担

ある空港を3つの航空会社A, B, Cが利用している。それぞれ小型機, 中型機, 大型機の3種類の飛行機を保有しており, 1年あたりの離着 陸回数は, 以下のとおりである。

A: 大型機300回,中型機200回,小型機100回

B: 大型機200回,中型機200回,小型機100回

C: 大型機100回,中型機100回,小型機200回

この空港の3000mの滑走路のうち、大型機は3000mすべてを、中型機は2500mを、小型機は1500mを利用する。この空港では、1年に1回、滑走路の補修を行う。その際には3000mの滑走路すべてを同じように補修しなければならず、1mあたり10万円の費用を要する。

(問題) 補修費用の総額10万x3000=3億円を, A, B, C3社でどのよう に分担すればよいか?

費用ゲームとしての定式化

プレイヤー:各飛行機の各離着陸 1500人ゲーム

 N_B, N_M, N_S :

大型機(B), 中型機(M), 小型機(S)のプレイヤーの集合

$$|N_B| = 600, |N_M| = 500, |N_S| = 400$$

$$N = N_B \cup N_M \cup N_S$$

費用関数

$$c_B = 30, c_M = 25, c_S = 15$$
(単位:千万円)

$$C(S) = \max \{ c_i | S \cap N_i \neq \emptyset, i = B, M, S \}$$

公理によるシャープレイ値の解法

 N_B, N_M, N_S :大型機(B), 中型機(M), 小型機(S)のプレイヤーの集合 $|N_B|=600, |N_M|=500, |N_S|=400$

$$N = N_B \cup N_M \cup N_S$$

$$C(S) = \max \{ c_i | S \cap N_i \neq \emptyset, i = B, M, S \}$$
 $c_B = 30, c_M = 25, c_S = 15$

$$(N, C_B)$$
 $C_B(S) = c_B - c_M$ $S \cap N_B \neq \emptyset$
 0 $S \cap N_B = \emptyset$

 $i \notin N_B \rightarrow i は ナルプレイヤー$ $i, j \in N_B \rightarrow i, j は 対称$

$$\begin{split} \phi_i(C_B) = & \ (c_B - c_M) / \ |N_B| = & (30\text{-}25) / 600 = 1 / 120 \qquad i \in N_B \\ 0 \qquad \qquad i \not \in N_B \end{split}$$

公理によるシャープレイ値の解法

 N_B, N_M, N_S :大型機(B), 中型機(M), 小型機(S)のプレイヤーの集合 $|N_B| = 600, \ |N_M| = 500, \ |N_S| = 400$

$$N = N_B {\cup} N_M {\cup} N_S$$

$$C(S) = \max \{ c_i | S \cap N_i \neq \emptyset, i = B, M, S \}$$
 $c_B = 30, c_M = 25, c_S = 15$

$$(N, C_{M}) C_{M}(S) = c_{M} - c_{S} S \cap (N_{B} \cup N_{M}) \neq \emptyset$$
$$0 S \cap (N_{B} \cup N_{M}) = \emptyset$$

 $i \notin N_B \cup N_M$ はナルプレイヤー, $i, j \in N_B \cup N_M$ は対称

$$\begin{aligned} \phi_{i}(C_{M}) &= (c_{M} - c_{S}) / |N_{B} \cup N_{M}| \\ &= (25-15) / (600+500) = 1/110 & i \in N_{B} \cup N_{M} \\ 0 & i \notin N_{B} \cup N_{M} \end{aligned}$$

公理によるシャープレイ値の解法

 N_B, N_M, N_S :大型機(B), 中型機(M), 小型機(S)のプレイヤーの集合 $|N_B| = 600, \ |N_M| = 500, \ |N_S| = 400$

$$N = N_B \cup N_M \cup N_S$$

$$C(S) = \max \{ c_i | S \cap N_i \neq \emptyset, i = B, M, S \}$$
 $c_B = 30, c_M = 25, c_S = 15$

$$(N, C_S)$$
 $C_S(S) = c_S$ $S \cap (N_B \cup N_M \cup N_S) = S \cap N \neq \emptyset$ $i, j \in N_B \cup N_M \cup N_S$ は対称

$$\phi_i(C_S) = c_S / |N| = 15/(600+500+400) = 1/100$$
 $i \in N$

$$(N, C)$$
 $C(S) = C_B(S) + C_M(S) + C_S(S)$ $\forall S \subseteq N$

ゲームの和に関する性質

シャープレイ値による各社の費用分担

 N_B, N_M, N_S :大型機(B), 中型機(M), 小型機(S)のプレイヤーの集合 $|N_B| = 600, \; |N_M| = 500, |N_S| = 400$

 $N = N_B \cup N_M \cup N_S$

$$C(S) = \max \{ c_i | S \cap N_i \neq \emptyset, i = B, M, S \}$$
 $c_B = 30, c_M = 25, c_S = 15$

$$(N, C)$$
 $C(S) = C_B(S) + C_M(S) + C_S(S)$ $\forall S \subseteq N$
$$\phi_i(C) = \frac{1}{120} + \frac{1}{110} + \frac{1}{100}$$
 $i \in N_B$
$$= \frac{1}{100} + \frac{1}{100}$$
 $i \in N_M$
$$= \frac{1}{100}$$

A社: 大型機300,中型機200,小型機100回

→ 300(1/120+1/110+1/100)+200(1/110+1/100)+100×(1/100) B,C社も同様

2007年7月参議院選挙前後の各政党の議席数 (参議院HPより)

	166国会最終日	167国会最終日		
	(7/5)	(8/10)		
自由民主党	109	85		
民主党•新緑風会	83	112		
公明党	23	20		
日本共産党	9	7		
社会民主党•護憲連	合 6	5		
国民新党	4	4		
無所属	6	9		
計	240(欠2)	242		
	(過半数 121)	(過半数 122)		

2005年7月都議会議員選挙前後の 各政党の議席数(東京新聞HP及び参議院HPより)

	選挙前	選挙後	(2008.2.12)
自由民主党	51	48	48
公明党	21	23	22
民主党	19	35	34
日本共産党	15	13	13
生活者ネットワーク	6	3	4
諸派	1	1	0
無所属	4	4	4
計	117	127	125
(過半数	59	64	63)

投票ゲーム

(N, v) が<u>単純ゲーム</u> \leftrightarrow v(S) = 1 または $0 \forall S \subseteq N$

- (N, v) が<u>投票ゲーム</u> ↔
 - (1) 単純ゲーム
 - (2) v(N) = 1
 - (3) v(S) = 1, $S \subset T \rightarrow v(T) = 1$
 - (4) $v(S) = 1 \rightarrow v(N-S) = 0$
- $v(S) = 1 \rightarrow S : 勝利提携 v(S) = 0 \rightarrow S : 敗北提携 W = {S \subseteq N \mid S は勝利提携} とすると,$
 - (2)lt, $N \in W$
 - (3)lt, $S \in W$, $S \subseteq T \rightarrow T \in W$
 - (4)lt, $S \in W \rightarrow N S \notin W$

投票ゲーム

 $S \subseteq N$ が最小(極小)勝利提携 \longleftrightarrow $S \in W$ かつ $T \notin W \ \forall T \subseteq S$ $W^m = \{S \subseteq N \mid S \ t$ は最小勝利提携 \to $v(S) = 1, \ v(S - \{i\}) = 0 \ \forall i \in S$

 $i \in N \ \text{if} \ \frac{f(x)}{f(x)} = \frac{f(x)}{f(x)} \frac{f(x)}{f($

 \leftrightarrow v(S) = v(S-{i}) = 0 または v(S) = v(S-{i}) = 1 \forall i \in S ナルプレイヤーは最小勝利提携に入ることはない

 $i \in N$ が <u>拒否権を持つプレイヤー</u> \leftrightarrow $i \in S$ $\forall S \in W$

 $i \in N$ が<u>独裁者</u> \leftrightarrow $W = \{S \subseteq N \mid i \in S\}$ 独裁者 \rightarrow ナ ルプレイヤー (\leftarrow は必ずしも成り立たない)

投票ゲーム (N, v) が全員一致ゲーム \leftrightarrow $\mathbf{W} = \{N\}$

重み付き多数決ゲーム

重み付き多数決ゲーム $(q; w_1, w_2, ..., w_n)$

q:必要票数

wi: 投票者iのもつ票数

$$\rightarrow$$
 W = { $S \subseteq N \mid \Sigma_{i \in S} w_i \ge q$ }

$$(q; w_1, w_2, ..., w_n)$$
 が投票ゲーム $\leftrightarrow \Sigma_{i \in N} w_i \ge q > \Sigma_{i \in N} w_i / 2$

3人多数決ゲーム(事例6-1) \rightarrow (2;1,1,1),... 1が拒否権を持つ3人拒否権ゲーム \rightarrow (3;2,1,1), (4;3,1,1),...

実際の投票ゲーム

2007年7月参議院:

```
自 民公共社国無
```

選挙前 (121; 109, 83, 23, 9, 6, 4, 1, 1, 1, 1, 1, 1)

選挙後 (122; 85, 112, 20, 7, 5, 4, 1,1,1,1,1,1,1,1)

2005年7月都議会:

自 民 公 共 社 諸 無

選挙前 (59; 51, 21, 19, 15, 6, 1, 1,1,1,1)

選挙後 (64; 48, 23, 35, 13, 3, 1, 1,1,1,1)

国連安全保障理事会:

常任理事国(5カ国)と非常任理事国4カ国以上の賛成→可決 常任 非常任

(39; 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (44; 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ...

投票ゲームのシャープレイ値 (シャープレイ・シュービック(SS)指数)

貢献度

	1	2	3	
$1 \leftarrow 2 \leftarrow 3$	0	1	0	
1← 3← 2	0	0	1	貢献度が1の投票者
2 ← 1 ← 3	1	0	0	→ <u>ピヴォット</u>
2 ← 3 ← 1	1	0	0	(各順列にピヴォットは1人)
3←1←2	1	0	0	(ロルスノー・ローノカーノー・1017人)
3← 2← 1	1	0	0	

シャープレイ値 (4/6, 1/6, 1/6) シャープレイ・シュービック(SS)指数

シャープレイ・シュービック(SS)指数の公式

プレイヤー i のシャープレイ値

$$(1/n!) \sum_{S \subseteq N, i \in S} (s-1)! \times (n-s)! (v(S)-v(S-\{i\}))$$

$$v(S)-v(S-\{i\})=1 \leftrightarrow S \in W$$
 かつ $S-\{i\} \notin W$ それ以外の場合は $v(S)-v(S-\{i\})=0$

従って、プレイヤー i のシャープレイ・シュービック指数 $(1/n!) \sum_{S \in W, S-\{i\} \notin W} (s-1)! \times (n-s)!$

国連安全保障理事会におけるSS指数

常任理事国(5カ国)と非常任理事国10カ国のうち4カ国以上 → 勝利提携

常任理事国:

ピヴォットになるのは、すでに他の常任理事国4カ国すべてと 非常任理事国4カ国以上が加わっている場合

従って、常任理事国1カ国の SS指数は

$$(1/15!) \sum_{k=4}^{10} {}_{10}C_k \times (4+k)! \times (10-k)! = 421/2145 \cong 0.196$$

非常任理事国1カ国の SS指数は

 $(1-(421/2145)x5)/10 \approx 0.002$

SS指数のパラドックス

分裂のパラドックス

(5;3,3,3) SS指数は (1/3,1/3,1/3) (5;3,3,1,1,1) SS指数は (9/30,9/30,4/30,4/30,4/30) プレイヤー3は、分裂することにより 1/3 → 3×(4/30) = 12/30 に増加

新規参加者のパラドックス

(4; 3, 2, 2) SS指数は (1/3, 1/3, 1/3)

(5; 3, 2, 2, 1) SS指数は (5/12, 3/12, 3/12, 1/12)

プレイヤー1は、4が新たに加わることにより

1/3 → 5/12に増加

注意: (4;3,2,2), (5;3,2,2,1) はいずれも<u>多数決ルール</u> プレイヤー1の票数の割合 $3/7 \rightarrow 3/8$ に減少

2007年7月参議院選挙前後の 各政党の議席数とSS指数

166国会最終日(7/5)		167国会最	167国会最終日(8/10)		
	議席数	SS	議席数	SS	
自民党	109	0.488	85	0.116	
民主党	83	0.146	112	0.527	
公明党	23	0.146	20	0.116	
共産党	9	0.092	7	0.079	
社民党	6	0.042	5	0.045	
国民新党	4	0.038	4	0.033	
無所属	6	0.008	9	0.010	
計	240		242		
(過半数	121		122)		
		(無所属)	は,議員1人あたり	りの指数)	

2005年7月都議会議員選挙前後の 各政党の議席数とSS指数

	選挙	選挙後		
	議席数	SS	議席数	Z SS
自民党	51	0.550	48	0.426
公明党	21	0.117	23	0.200
民主党	19	0.117	35	0.200
共産党	15	0.117	13	0.093
ネット	6	0.050	3	0.033
諸派	1	0.010	1	0.010
無所属	4	0.010	4	0.010
計	117		127	
(過半数	59		64)	

(無所属は、議員1人あたりの指数)

現在の衆議院における各政党の議席数 (2011年10月19日現在,衆議院HPより)

民主党・無所属クラブ		302	
自由民主党		118	
公明党		21	
日本共産党		9	
社会民主党•市民連合		6	
みんなの党		5	
国民新党		5	
たちあがれ日本		2	
国益と国民の生活を守る	会	2	
無所属		9	
計		479	(欠員1)
	(過半数	240)	

現在の参議院における各政党の議席数 (2011年11月27日現在,参議院HPより)

民主党•新緑風会		106	
自由民主党・無所属の会		83	
公明党		19	
みんなの党		11	
日本共産党		6	
たちあがれ日本・新党改革	<u> </u>	5	
社会民主党•護憲連合		4	
国民新党		3	
無所属		5	
計		242	(欠員0)
	(過半数	122)	

現在の東京都議会における各政党の議席数 (2011年9月14日現在,東京都議会HPより)

民主党	50
自由民主党	38
公明党	23
日本共産党	8
生活者ネットワー	ク 3
無所属	3
計	125 (欠員2)
	(過半数 63)

中央大学理工学部情報工学科松井知己先生のホームページ

http://homepage2.nifty.com/TOMOMI/voting/voting.html

次回までの課題

- 1 滑走路補修費用の分担問題について、授業で求めたシャープレイ値がこのゲームのコアに入っていることを示せ。(注意:費用ゲームとして定式化されているので、 $\Sigma_{i\in S}$ $\phi_i(C) \leq C(S) \ \forall \ S \subseteq N$ を示せばよい。)
- 2 以下の2つの重み付き多数決ゲームのSS指数を求めよ。
 - (1) (5; 3,3,1,1,1)
 - **(2)**(5; 3,2,2,1)
- 3 現在の東京都議会における各政党の議員数は以下のとおりである。 民主党 50, 自民党 38, 公明党 23, 共産党 8, 生活者ネット 3, 無所属 3 議案の採択には, 議員総数125の過半数である63 票の賛成が必要である とする。このとき, この5政党および無所属議員それぞれのSS指数を, 国連 安全保障理事会においてSS指数を求めた方法を参考にして求めよ。ただ し, 政党間のどのような提携も可能であるとする。解答は, 結果だけでなく, どのような方法で求めたかも示すこと。