第8章(続き)

光増幅器(2)

2012年2月6日(月)

いろいろな光増幅器

^{2011年度} _{光通信システム} Pr, Er, Tmイオンのエネルギー準位

* OOFFA: フッ化物元ファイハ増幅器 OOTFA: テルライト系光ファイバ増幅器 OOSFA: 石英系光ファイバ増幅器 OOはPD, ED, TD

- 信号光波長 : 1.55µm
- 適用波長 : 1.535μm~1.560μm
- 利得 : 20 ~ 30dB
- 雜音指数(NF) : 5.0dB
- **飽和光出力** : +20dBm
- 伝送路損失 : 0.2dB/km
- 伝送路分散 : 0.5ps/nm/km

励起波長による特性差

波長	1.48µm	0.98µm
光源	InGaAsP/InP MQW-LD	InGaAs/GaAs歪MQW-LD
利得効率	5dB/mW	10dB/mW
雑音指数	5.5dB	3∼4.5dB
飽和光出力	+20dBm	+20dBm
励起波長範囲	1.47 ~ 1.49µm (20nm)	0.979~0.981m (2.5nm)
励起光出力	< 400mW	< 350mW

Raman増幅器の特徴

信号光波長と励起光波長の関係

ラマン散乱:

励起光により分子振動(LOフォノン)を引き起こし、その差のエネルギーの光を 散乱する現象

^{2011年度} _{光通信システム} 光ファイバの伝送損失と対応する光ファイバ増幅器

光ファイバ増幅器の構成

^{2011年度} 光通信システム 半導体光増幅器(SOA)の基本構成

第9章

波長多重伝送技術

- 1. WDM伝送と分散マネジメント
- 2. 波長多重(WDM)伝送と変調方式
- 3. 分散補償器

DWDM: Dense Wavelength Division Multiplexing(高密度波長多重技術)

周波数間隔:100GHz → 波長間隔:0.8nm間隔@1550nm帯 に相当

波長多重伝送の構成

2011年度 光通信システム AWGを多段中継するリングネットワーク

WSS : Wavelength Selective Switch

波長多重(WDM)と分散マネジメント

大容量化のための技術的アプローチ

	技術要素	現在の状況	課題	検討案
1	1波あたり伝送 速度の高速化	10Gbps→40Gbps	高速電子回路の実現	InP系、SiGe系
2	使用波長帯域の 広帯域化	S, C, Lバンドの 使用	誘導ラマン散乱による パワーチルト	分布ラマン増幅 による光強度の 補正
3	多チャネル化	100GHz間隔 →50GHz間隔	変調周波数との トレードオフ	CS-RZ, DQPSK など狭帯域 変調方式の検討

 $f_{ijk}=f_i+f_j-f_kを満足する波長の発生効率は位相整合条件$ $<math>\Delta\beta=\beta(f_i)+\beta(f_j)-\beta(f_k)-\beta(f_{ijk})=0を満たす場合</u>に最大となる。$

2011年度 4光波混合の発生 光诵信システム 発生光のパワー $P_{ijk}(L) = \eta_{ijk} \kappa^2 (B \gamma_3)^2 P_i(0) P_j(0) P_k(0) \exp(-\alpha L)$ ただし $\kappa = \frac{32\pi^3 L_{eff} / A_{eff}}{n^2 \lambda \cdot c}$ $\eta ijk = \left(\frac{\alpha^2}{\alpha^2 + \Lambda \beta^2}\right) \left[1 + \frac{4\exp(-\alpha L)\sin^2(\Delta\beta L/2)}{(1 - \exp(-\alpha L))^2}\right] (\mathbf{\hat{\mathcal{R}}} \mathbf{\hat{\mathcal{L}}} \mathbf{\hat{\mathcal{R}}})$ $\Delta\beta = \beta(\nu_i) + \beta(\nu_j) - \beta(\nu_k) - \beta(\nu_{ijk})$ (零分散波長と一致or近傍の場合)

4光波混合発生効率

① 動作波長が零分散波長と一致しない場合

 λ =1.55 μ m, L=10km, D=15ps/nm/kmの場合、

 $\Delta v_{eq} > 50 \text{GHz} \subset \tau \eta_{ijk} < 1\%$

波長間隔を大きくすることにより4光波混合を抑制可能

② 動作波長が零分散波長と一致あるいはきわめて近傍の場合

$$\Delta\beta = 0: 位相整合条件 を満たす$$

4光波混合によるコヒーレントクロストークの影響大

2011年度 光通信システム 分散マネジメント伝送(SMF+DCF/SMF+RDFなど)

2011年度
光通信システム FWMの影響(解析例) 1549.2nm DFB

① DSF (分散2km/nm/km)88km ② NZ-DSF(分散8ps/nm/km)×80km +DCF(分散-80ps/nm/km)×8km

PD

分散マネジメント伝送路の効果(解析例)

^{2011年度} _{光通信システム} 分散マネジメント伝送路における累積分散の影響

波長多重(WDM)と変調方式

^{2011年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(1-1)**

高周波数利用効率

^{2011年度} _{光通信システム} DWDMにおける変調方式への要求仕様(1-2)

伝送容量倍增!

^{2011年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(2-1)**

^{2011年度} _{光通信システム} DWDMにおける変調方式への要求仕様(2-2)

平均受信感度Paveを用いてRZ·NRZのSNRを比較する。

$$SNR = \left(\frac{e\,\eta i \frac{GPs}{\hbar\omega}}{\left(\frac{\sqrt{\sigma s, shot^{2} + \sigma sp, shot^{2} + \sigma s - sp^{2} + \sigma sp - sp^{2} + \sigma sp, shot^{2} + \sigma sp - sp^{2} + \sigma sp - sp$$

 $Ps: RZ = NRZ \times 2(ピーク強度)$ $\sigma_{s,shot}^{2}, \sigma_{s-sp}^{2}: RZ = NRZ \times 4(ピーク強度&帯域)$ $\sigma_{sp,shot}^{2}, \sigma_{sp-sp}^{2}, \sigma_{th}^{2}: RZ = NRZ \times 2(帯域)$ より、SNR(RZ)>SNR(NRZ) 2011年度 DPSK変調 光诵信システム DPSK(Differential Phase-Shift-Keying, 差動位相シフトキーイング方式) PSK変調の1種でデータ1を隣接ビット間の位相差π、データ0を 隣接ビット間の位相差0に割り当てたもの。 40Gbps DWDMの長距離・受信感度改善を目的にこの5~6年急激に 取り組みが盛んになってきた。 π () () π 1ビット遅延 バランス型 受信器 送信 DPSK 信号 信号光 0 π π 1ビット 遅延 バランス型受信器 受信 0 により両極電流を得る 電流 バランス型検波器により光位相0,πを電気レベル+1,-1に変換 電圧0に閾値を設定でき、レベル0,1の受信より感度を3dB改善可能

^{2011年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(4)**

^{2011年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(3)**

(例1) NRZはRZの半分の帯域で済むので変調効率の観点では有利だが、 1インターバルの平均光パワーが倍のため非線形耐力は劣る。

NRZ

RZ

^{2011年度} _{光通信システム} **DWDMにおける変調方式への要求仕様(5)**

多賀, 鈴木, 波平, 2000年信学会総合大会, SB-8-7 (2000).

^{2011年度} 光通信システム **DWDMにおける変調方式への要求仕様(6)**

波長フィルタ多段透過耐性

多段フィルタによるスペクト形状変化・波形劣 化→狭帯域スペクトルの変調方式 (2値:CS-RZ, Duobinary)(多値:DQPSK)

^{2011年度} 光通信システム 変復調方式の比較(40Gbps以上)

2011年度周波数利用効率の向上へ光通信システム(ナイキストWDM)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, E. Torrengo, and F. Forghieri, ECOC20

CWDM

ITU-T G.694.2での標準化
・光アンプの使用は想定せず
・Uncooledの安価なDFB-LDを使用
・現在の製造技術で量産可能なWDMフィルタを使用

WDM用光ファイバ

FWM発生効率

大A_{eff}光ファイバ

タイプ	屈折率分布	電界分布	A _{eff} (μm ²) @ 1550nm	MFD (µm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm
標準SMF			80~85	10	+17	0.06
階段型 DSF			40~50	7.5~8.5 <mark>ントオフ波長</mark> の	-5 ~ +5 <mark>の長波長シフ</mark>	$0.07 \sim 0.1$
セグメンテッド コア型			eff 、// 曲	<mark>げ損失増大</mark> 8~9	-5~+5	$0.10 \sim 0.12$
中心ディップ 型(単リング)			80~120	8~10	-5~+5	0.08~0.09
		ー <mark>電界分布か</mark>	<mark>、中心にディ</mark>	<mark>ップを持つ</mark> 🤇	────────────────────────────────────	マイバとの接続損失フ 度)
中心ティック 型(2重リング)			80 ~ 150	8 ~ 10	-5~+5	0.08~0.09

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.6

各社ホームページの製品情報より

メーカ	製品名	伝送損失 (dB/km)	分散 (ps/nm/km)	分散スロープ (ps/nm²/km)	PMD (ps/√kijn
住友電工	PureGuide ®	≤ 0.22	5.0 - 10.0(C)	≤0.063 ≤@ 1550nm	≤ 0.2
Corning	Leaf TM	≤ 0.25	2.0 - 6.0(C) 4.5 - 11.2(L)	Not shown	≤ 0.0 4
Lucent	TrueWave TM	≤ 0.25	2.6 - 6.0(C) 4.0 - 8.9(L)	≤0.05 ≤@ 1550nm	≤ 0.1
Alcatel	TeraLight TM	≤ 0.25	5.5 - 10.0(C) 7.5 - 13.8(L)	0.058 @ 1550nm	≤ 0.08

屈折率分布	MFD (μm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm	性能指数 (ps/nm/dB) @ 1550nm
	5.0	-70 ~ -90	+0.08	200 ~ 250
<u> </u>	5.0	-70~-90 +0.08		200~250
4.5		-100~-135	-0.2~-0.5	200~300
R	DF 5.8	-15.6	-0.046	62
	5.0	-100~-300	-0.15	300~400

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.6

@ 1550nm

ファイバ	損失 (dB/km)	n_2 (×10 ⁻²⁰ m ² /W)	A _{eff} (μm ²) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km)
+D	0.171	2.8	112	+20.6	+0.060
-D	0.296	4.0	19	-55.9	-0.142
+ D /- D	0.212		79	-1.5	+0.007

OFC2011の発表内容を元に(1550nmでの値)

メーカ名	伝搬損失 [dB/km]	Aeff [µm ²]	分散 [ps/nm/km]	分散スロープ [ps/nm ² /km]	特徴
住友電工	0.16	134	21	0.061	純シリカコア プライマリ被覆樹脂の ヤング率低減による
Corning	0.17	140			・ イソロヘントロスの低減 純シリカコア トレンチ・アシスト
Draka	0.183	155	21.7	0.064	トレンチ・アシスト 純シリカコア

アレイ導波路格子 (AWG)

AWG (Arrayed Waveguide Grating)

^{2011年度} 光通信システム AWGのガウシアン型透過帯域スペクトル

2011年7月29日 平成23年光NW産業・技術研究会第2回公開 高橋浩 『石英平面光波回路の現状と今後の展開』より

位相歪解消

光分散補償器

2011年度 光通信システム ラティス型フィルタを用いた分散補償器

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

8チャネル40Gbps WDM用PLC型分散スロープ補償器

分散補償特性

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

2011年度 光通信システム Virtually-Imaged Phased Array (VIPA)

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

VIPAの分散特性

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2011年度} _{光通信システム}分散マネジメント伝送路とVIPAを用いた40Gbps伝送結果

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2011年度} _{光通信システム} 偏光度モニタを用いたPMD補償器

磯村, ラスムッセン, 大井, 秋山, 石川, 2003年信学ソ大, B-10-124 (2003).

^{2011年度} 光通信システム PMD-波長分散同時自動補償実験

大井, ラスムッセン, 高原, 中村, 磯村, 福士, 石川, 2003年信学ソ大, B-10-121 (2003).

電気分散補償技術

2011年度 光通信システム EDC (Electronic Dispersion Compensation)技術(1)

FIR (Finite Inpulse Response)フィルタで構成することが多い

プリコンペンセーションの構成(1) 光通信システム

2011年度

プリコンペンセーションの構成(2)

Look Up Table (LUT)によるDSP構成

RAM[~]-ZLUT

フリップ・フロップ・ベースLUT

Kim Roberts (Nortel), COIN2008, C-15-PM1-1-3.

Rule : 0.13µm BiCMOS

Format : ASK

of Gates : 2.0M

Architecture : 2 × 20Gs/s 6bit DAC

Power consumption : 17W

非線形等化器

<u>Maximum Likelihood Sequence Estimation (MLSE、最尤推定法)</u>の報告例が出てきた。

- 畳込み符号の元の情報ビットを少ない計算量で推定する推定法
 としてよく用いられる。
 - 元は複雑な演算だが、ビタビアルゴリズムの登場で演算量が 削減され、実用化された
 - 分散補償というよりも、誤り訂正
 - 推定法なので、最も確からしい解は求めるが誤っている
 可能性もある