第6章(続き)

光ファイバ伝送特性(2)

2012年1月16日(月)

PMD制限

バイナリ・コード

bit rate	PMD制限距離
20Gbps	520km
40Gbps	130km
100Gbps	21km

PMDの面では、伝送帯域40Gbps以上は厳しい

^{2011年度} _{光通信システム} 波長分散・偏波分散のビットレート依存性

● 波形歪の原因

① 波長分散

$$B\sqrt{L} = \sqrt{\frac{\ln 2}{2\pi}} \frac{\sqrt{c}}{\lambda\sqrt{|\sigma_T|}} = \frac{181.9}{\lambda\sqrt{|\sigma_T|}}$$

伝送距離制限はビットレートの
2乗に反比例

② 偏波モード分散

PMDによる波形歪は距離のルートに比例(比例定数をCとおく) 1タイムスロットの一定割合(kとおく)以内が伝送制限と すると、 $\frac{k}{B} \ge C\sqrt{L}$ $B\sqrt{L} \le \frac{k}{C}$ 伝送距離制限はビットレートの 2乗に反比例

海底系光ファイバの研究動向

^{2011年度} _{光通信システム} 海底伝送システムの開発史

日経コミュニケーション 2010年1月1日号『光ネットワーク最新技術(19) 国際間を 結ぶ海底伝送システム』 p.66 図1

^{2011年度} _{光通信システム} 海底光伝送システムの基本構成

最近の光ファイバの研究動向

^{2011年度} 光通信システム デジタルコヒーレント・大容量伝送用ファイバに進展

^{2011年度} 周波数利用効率・距離積を引き上げる ^{光通信システム} デジタル・コヒーレント技術と低非線形性ファイバ

Y. Yamamoto, M. Hirano, and T. Sasaki, OFC/NFOEC2011, OWA6 (2011).

2011年度 光通信システム 新規光ファイバ開発が求められる背景

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 中沢 "光通信インフラの限界に挑戦する" p.3 (2009).

^{2011年度} 光通信システム 大容量化(1000倍の容量拡大)を実現する3M技術

- マルチレベル変調(多値変調):×10
 m-PSK, m-QAM, 偏波多重(PDM), O-OFDM(マルチキャリア)
- マルチコアファイバ: ×10

空間分割多重(Spatial Division Multiplexing, SDM)

● マルチモード制御:×10

モード分割多重(Mode Division Multiplexing, MDM)

ファイバ・フューズの問題

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 笹岡, 武笠, Abedin "光ファイバの限界と 課題" p.9 (2009).

ファイバフューズ発生実験

ファイバフューズの発生閾値

ファイバフューズ発生後の光ファイバ

コア拡大により閾値拡大可

光ファイバの特性改善例と研究課題

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 笹岡, 武笠, Abedin "光ファイバの限界と 課題" p.8 (2009).

	伝送容量へのインパクト	光ファイバの課題
モード数拡大 1 → 10	 モード多重による容量拡大 (MIMO等伝送技術は必要) V値3倍強(単純ステップ型) →コア断面積10倍(Δn維持) →非線形性低減 	 モード数増加だけであれば 課題なし モード分散制御・モード間 結合の抑制等に対して 新規設計・開発必要
コア数増大 1 → 10	各コアが従来と同等性能 であれば容量10倍	 コア間クロストークを考慮した設計 製造技術開発 ファイバ相互・機器間接続
伝送損失 1/10	 光SNR確保 強度/振幅変調多値化 入力パワー減による位相の 非線形ノイズ低減 → 位相/周波数変調多値化 非線形性低減の可能性 	 PBGFや 石英以上に透明な新材料

① マルチコア・ファイバ

Multi-Core Fiber

② マルチモード・ファイバ

Multi-Mode Fiber(モード多重伝送用Few Mode Fiber)

③ 空孔アシストファイバ

Hole Assisted Fiber (HAF)

④ フォトニック結晶ファイバ

Photonic Crystal Fiber (PCF)

⑤ フォトニック・バンドギャップ・ファイバ

Photonic Bandgap Fiber (PBF)

^{2011年度} _{光通信システム} 更なる大容量伝送を支えるマルチコア・ファイバ(1)

非結合マルチコアファイバ

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 國分,小柴 "シングルコア光ファイバの限界 を打ち破るマルチコアファイバ" p.17 (2009).

^{2011年度} _{光通信システム} 更なる大容量伝送を支えるマルチコア・ファイバ(2)

結合マルチコアファイバ

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 國分,小柴 "シングルコア光ファイバの限界 を打ち破るマルチコアファイバ" p.18 (2009).

コア間を強結合させ、異なる伝搬定数のモードに 伝送チャネルを配置

2011年度 光通信システム FTTH用空孔アシストファイバ(HAF)

http://www.ntt.co.jp/news/news03/0312/031217 1.html 大薗, Yao, 滑川,日立電線No.26、 p.73 (2007-1). 屈折率差増大による曲率半径低減 → 施工性向上に寄与 カールコード形状により、実寸の15分の1に 縮小

> 収容面積:36分の1 (曲率半径5mm)

Photonic Crystal Fiber (PCF)

大薗, Yao, 滑川,日立電線No.26、 p.73 (2007-1).

● 石英コアと外周構造の等価屈折率差による閉じ込め

- d/A ≤ 0.43 のとき、すべての波長域においてシングルモード可
 d:空孔径
 A:空孔間隔
- 低損失化が課題(2dB/km程度)

(左側写真) http://www.bath.ac.uk/physics/groups/opto/pcf.html

(右側データ)http://www.bath.ac.uk/physics/groups/opto/documents/PECS%20pcf.PDF

2011年度 光通信システム フォトニックバンドギャップファイバ

Photonic Bandgap Fiber (PBGF)

大薗, Yao, 滑川,日立電線No.26、 p.75 (2007-1).

 周期構造のブラッグ回折による バンド形成
● 空気コア → 高パワー伝送路 極低非線形性 極低損失

第7章

ビット誤り率(1)

- 1. 誤り率(BER)
- 2. IM-DD方式のBER
- 3. コヒーレント方式のBER

受信系の基本構成(1)

受信系の基本構成(2)

● 信号対雑音比(SNR: Signal to Noise Ratio)

● 誤り率(BER: Bit Error Rate)

誤り率特性

ビット誤り率(BER: Bit Error Rate): Oレベルを1レベル、1レベルをOレベルに誤判定する確率。 低ければ低いほど良い。

p(i):iレベルの発生確率(i=0,1) E_{ij}:iレベルをjレベルと誤認識する確率(ガウス分布)

IM-DD方式のBER

BERの計算式

 $\frac{s_1 - v}{\sigma_1} = y, \frac{v - s_0}{\sigma_0} = y$ の変数変換を行い、 $p(1) = p(0) = 1/2(\neg - \rho \propto 1/2)$

BER最小の条件は識別レベルが2つのガウス分布の交点に設定した場合であり、 $E_{10}=E_{01}$ である。

$$Q = \frac{S_1 - V_{th}}{\sigma_1} = \frac{V_{th} - S_0}{\sigma_0} \sum V_{th} = \frac{\sigma_0 S_1 + \sigma_1 S_0}{\sigma_0 + \sigma_1} \quad (7.3)$$

$$\sum \qquad Q = \frac{s_1 - s_0}{\sigma_1 + \sigma_0} \qquad (7.4)$$

(7.2)に代入して、
$$BER = \frac{1}{\sqrt{2\pi}} \int_{Q}^{\infty} \exp(-\frac{y^2}{2}) dy = \frac{1}{2} erfc(\frac{Q}{\sqrt{2}})$$
 (7.5)

BERとSNRの関係

光通信のマーク、スペースの雑音量は強度・構成要素に違いがあるため 等しくないが、両者の平均量を等価的な雑音量と仮定して、

$$SNR = \left\{\frac{s_1 - s_0}{(\sigma_1 + \sigma_0)/2}\right\}^2 = 4Q^2 \quad (7.6) \quad \sum \qquad BER = \frac{1}{2} \operatorname{erfc}(\frac{\sqrt{SNR}}{2\sqrt{2}}) \quad (7.7)$$

2011年度

光通信システム

ただし erfc(x):補誤差関数 erfc(x) = $\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-t^2) dt$

雑音の構成要素

光源の消光比が有限の場合には考慮が必要)

ショット雑音限界

- 1レベルの信号光ショット雑音と熱雑音の分散量(σ_1)
- ※ NRZ信号を仮定し、信号帯域B/2とした。

※数値例)

$$P_{s} = -3dBm, B = 40GHz, T = 300K, \eta_{i} = 0.8, R_{L} = 50\Omega, \lambda = 1.55\mu m$$
のとき、

$$k = 1.38 \times 10^{-23} J/K, \hbar = \frac{6.63 \times 10^{-34}}{2\pi} J \cdot s, \omega = 2\pi \frac{c}{\lambda} = 2\pi \frac{3 \times 10^{8}}{\lambda} Hz$$
なので

$$2e \frac{e\eta_{i}P_{s}}{\hbar\omega} \frac{B}{2} = 3.2 \times 10^{-12} [A^{2}]$$

$$\frac{4kT}{R_{L}} \frac{B}{2} = 6.62 \times 10^{-12} [A^{2}]$$
熱雑音が支配的

計算結果

Optical Received Power (dBm)

最小受信感度:所定のBERを達成するために必要な最小の受信光パワー

・SNR \propto 1/B ・SNR \propto P_s² 同じBERを得るにはP_sを√B倍に (帯域4倍に対し受信感度3dB劣化)

陸上光ケーブル伝送方式: < 2.4Gbps BER < 10⁻¹¹ 10Gbps BER < 10⁻¹⁴

電話のサービスに適する:<10⁻⁶ 長時間平均符号誤り率:<10⁻⁹

などサービス・システムによって要求条件が異なる。

APDにおける最小受信感度

x:過剰雑音指数(x ~ 0.5 @ GaInAsP系)

$$M \rightarrow \infty$$
, x=0の場合、

2011年度

光通信システム

$$SNR = \frac{\eta_i P_s}{2\hbar\omega(\frac{B}{2})\frac{1}{4}}$$
 ショット雑音限界と等価

APDにおける最小受信感度(続き)

計算結果

2011年度

光通信システム

40Gbps NRZ, 300K, η_i=0.8

高感度化の変遷

年

伝送距離の損失制限

^{2011年度} 光通信システム **光ファイバの損失による伝送帯域制限**

^{2011年度} ^{光通信システム</sub>非線形効果による送信出力制限(1)}

自己位相変調による位相変化

光ファイバ屈折率の光強度依存性:光カー効果

$$\Delta \phi = \frac{2\pi \Delta nL}{\lambda_0} = \frac{2\pi n_2 |E|^2 L}{\lambda_0}$$

近年のDWDMでは SPMとXPMの影響により 0dBm程度に制限

数100mWが限界。

^{2011年度} _{光通信システム} 非線形シュレーディンガー方程式による伝送解析(1)

非線形シュレーディンガー方程式

E:光の電界 β₂:2次分散値 k:波数 n₂:非線形定数=1.22×10²² m/V

入力信号(10Gbps,7段M系列)

^{2011年度} _{光通信システム} 非線形シュレーディンガー方程式による伝送解析(2)

伝送後(入力光ピークパワー:1mW, D=18ps/nm/km, L=100km)

伝送後(入力光ピークパワー: 20mW, D=18ps/nm/km, L=100km)

2011年度

光诵信システム

非線形効果による送信出力制限(2)

1波長だけでも問題となる現象

誘導ブリルアン散乱(Stimulated Brillouin Scattering, SBS):
 入力光信号が光ファイバ自身の格子振動(音響フォノン)を引き起こし、
 入力方向に散乱する非線形現象。
 通常構造のファイバでは数dBmが限界

WDMで問題となる現象

- 誘導ラマン散乱(Stimulated Raman Scattering, SRS): 入力光信号が光ファイバ自身の格子振動(光学フォノン)を引き起こし、 進行方向に散乱する非線形現象。 積極的に光増幅器として利用する場合もある(ラマン増幅器)。 数W程度。
- 4光波混合(Four Wave Mixing, FWM):
 2入力あるいは3入力の光信号の和周波・差周波信号を誘起する 非線形現象。

入力光電界の3乗に比例。