第3章(続き)

光変復調技術(3)

2011年11月28日(月)

多値変調技術

2011 光通	年度 信システム	波長多重数を上げるか、 チャネルあたり速度の向上か(1)
•	ボー・レートの制限 ① 信号帯域/W	ð(WDMで波長フィルタで合分波を前提) /DMチャネル間隔 = 0.4bps/Hz,ビットレート40Gbpsの場合
	バイナリ変調: 多値変調(102	チャネル間隔 = 40Gbps÷0.4bps/Hz = 100GHz = 0.8nm, (1700nm-1400nm)÷0.8nm = 375波 スループット = 40Gbps × 375波 = 15Tbps 4QAM:10値多重 + PDM): チャネル間隔 = (40Gbps÷20)÷0.4bps/Hz = 5GHz = 0.04nm, (1700nm-1400nm)÷0.04nm = 7500波 スループット = 40Gbps × 7500波 = 300Tbps
	② 信号帯域/V	WDMチャネル間隔 = 0.4bps/Hz,ビットレート100Gbpsの場合

多値変調(1024QAM:10値多重+PDM):

チャネル間隔 = (100Gbps÷20) ÷0.4bps/Hz =12.5GHz = 0.1nm, (1700nm-1400nm)÷0.1nm = 3000波 スループット = 100Gbps×3000波 = 300Tbps

 ・フィルタ帯域から考えたぎりぎりのチャネル間隔では、ビットレートを 上げてもスループットは変わらない。
 ・多値化がスループット向上の有効な手段 (狭帯域化による波長多重数増加になっている)

波長多重数を上げるか、

チャネルあたり速度の向上か(3)

PMD制限

2011年度

光通信システム

バイナリ・コード

bit rate	PMD制限距離
20Gbps	520km
40Gbps	130km

100Gbps 21km

PMDの面からも、伝送帯域40Gbps以上は厳しい

^{2011年度} _{光通信システム} 波長分散・偏波分散のビットレート依存性

● 波形歪の原因

① 波長分散

$$B\sqrt{L} = \sqrt{\frac{\ln 2}{2\pi}} \frac{\sqrt{c}}{\lambda\sqrt{|\sigma_T|}} = \frac{181.9}{\lambda\sqrt{|\sigma_T|}}$$

伝送距離制限はビットレートの
2乗に反比例

② 偏波モード分散

PMDによる波形歪は距離のルートに比例(比例定数をCとおく) 1タイムスロットの一定割合(kとおく)以内が伝送制限と すると、 $\frac{k}{B} \ge C\sqrt{L}$ $B\sqrt{L} \le \frac{k}{C}$ 伝送距離制限はビットレートの 2乗に反比例 2011年度

光通信システム

- 波形歪を打ち破る技術
 - ① 多値化 → シンボルレートを下げて狭帯域化
 - ② 偏波多重 → シンボルレートを下げて狭帯域化
 - ③ 等化器 \rightarrow 時間領域/周波数領域
- SNR劣化をうち破る技術
 - ① 誤り訂正 → 軟判定FECによる符号化利得向上
 - ② 位相変調・同期検波 → デジタル・コヒーレント(イントラダイン)検波

高速デジタルLSIの進展により実現可能となってきた

^{2011年度} _{光通信システム} IQ位相変調器による出力信号の位相変化

DQPSK送信器

DQPSK送信ブロック

$$b_{1} \longrightarrow d_{1} \qquad \varphi_{I}(t) = \sqrt{\frac{E}{T}} \cos(2\pi f_{c}t)$$

$$\phi_{Q}(t) = -\sqrt{\frac{E}{T}} \sin(2\pi f_{c}t)$$

$$s(t) = \begin{cases} \sqrt{\frac{E}{T}} \cos[2\pi f_{c}t + \phi] & (0 \le t \le T) \\ 0 & (elsewhere) \end{cases}$$

$$s(t) = \sqrt{\frac{E}{T}} \cos[2\pi f_{c}t + \phi] = \sqrt{\frac{E}{T}} \cos\phi\cos 2\pi f_{c}t - \sin\phi\sin 2\pi f_{c}t$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10$$

DQPSK受信器

DQPSKによる狭帯域化の効果

多値信号の信号点配置

さらなる多値度向上の手法

T. Sakamoto, A. Chiba, and T. Kawanishi(NiCT), ECOC2008, Tu.1.E.3.

2011年度

光通信システム

^{2011年度} _{光通信システム}多値変調(QAM)用光変調器を用いた伝送実験

T. Sakamoto, A. Chiba, and T. Kawanishi(NiCT), ECOC2008, Tu.1.E.3.

^{2011年度} 光通信システム LiNbO₃・PLCハイブリッド集積型多値変調器

H. Yamazaki, OFC2011, OWV1.

変調器構成図とコンスタレーション

2011年度

^{2011年度} 光通信システム 光通信システム 光通信方式の周波数利用効率の進展

P. Winzer, PHO2010, TuF3.

^{2011年度} 光通信システム 周波数利用効率と受信感度のトレードオフ

宮本, 信学会誌, 2011年11月号.

PSK vs. OOK

QPSK vs. PSK

QAM

多値度の向上と課題

2008.3.24 日経エレクトロニクス『WiMAXは,本当に「モバイル」できるのか』記事より

● 周波数利用効率の制限

- ・無線伝送での実用例では10bit/s/Hzまで
- ・50Mbps ADSLでは15bitローディング(32768QAM)まで用いられている。

デジタル・コヒーレント受信

2011年度

光通信システムコヒ

コヒーレント検波の動向

20~15年前の研究のモーティベーション

ショット雑音限界に近い高感度の最小受信感度の実現が可能(IM-DD方式より25dB程度の受信感度改善が可能)。
 良好な特性の受信器の少ない波長1.3, 1.55µm帯における受信感度の向上が期待できる。

15年前の暗転

EDFA(光ファイバ増幅器)の登場により吸収による伝送距離制限が 飛躍的に改善され、受信にかかわる技術的課題をかかえても受信感度 改善効果を期待してコヒーレント方式を推し進める動機が薄れた。

2~3年前からの復興

EDFAを用いたDWDM方式の残留分散・非線形効果の影響など 技術的困難さを克服するため、コヒーレント方式の受信感度改善効果 が見直された。DPSKは受信器構成など技術的敷居が低かったので採用。

受信系の基本構成(1)

受信系の基本構成(2)

^{2011年度} 光通信システム デジタルコヒーレントレシーバの登場(1)

- 1980年代後半に全盛期を迎えたコヒーレント光通信の研究
 - 受信感度の改善効果 → EDFAにその座を奪われた
 - 周波数(波長)選択性 → 需要がなかった(WDMも1990年代中頃)
 - ▶ 技術的な難易度の高さ
 - 狭スペクトル光源
 - 偏波トラッキング
 - 高速IF回路、光PLL

^{2011年度} 光通信システム デジタルコヒーレントレシーバの登場(2)

- リバイバルしたコヒーレント光通信
 - 📀 感度改善が目的ではない
 - 🗧 高い周波数選択性が必要になってきた
 - 🗧 かつての技術的難易度が下がった

狭スペクトル光源 → 高ビットレートでスペック低下 光PLL → デジタル・コヒーレント技術により不要に

- 高ビットレート化(100Gbps)の要求が後押し
- 多値(16値以上)復調できるのは実質的にコヒーレント検波のみ

2011年度 光通信システム デジタル・コヒーレントレシーバの機能ブロック図

特徴

- LO(局部発振光)の位相を受信光に厳密に合わせなくても位相の推定が可能
 高速DSPの発展が寄与・コヒーレント再興の大きな原動力
- LOの発振線幅は受信IFのトラッキングのために狭線幅が必須

デジタルコヒーレントレシーバ回路図

2011年度 光通信システム

^{2011年度} _{光通信システム} 導波路MZI型偏波ビームスプリッタ(PBS)

2011年度 光通信システム 90度ハイブリッドによる位相・振幅の取得

信号光一局発光位相差(*φ*s-*φ*Lo)と 4出力

	0	$\frac{\pi}{2}$	π	$-\frac{\pi}{2}$
#1	0.5	0	0.5	1
#2	0.5	1	0.5	0
#3	0	0.5	1	0.5
#4	1	0.5	0	0.5

2011年度 光通信システム PLC型コヒーレントレシーバ(1)

Y. Nasu, T. Mizuno, R. Kasahara, and T. Saida, ECOC2011, Tu.3.LeSalve.4.

2011年度 光通信システム PLC型コヒーレントレシーバ(2)

Y. Kurata, Y. Nasu, M. Tamura, H. Yokoyama, and Y. Muramoto, ECOC2011, Th.12.LeSalve.5.

デジタル・サンプリング処理

利得等化回路

位相推定

2011年度 ^{光通信システム} を行う適応等化回路

^{2011年度} 光通信システム デジタルコヒーレント受信器用リアルタイムLSI

Kim Roberts (Nortel), COIN2008, C-15-PM1-1-3.

Rule : 90nm CMOS

Format : 40Gbps PDM-DQPSK

of Gates : 20M

Architecture : 4 × 20Gs/s 6bit ADC

Power consumption : 21W

Dispersion tolerance : ±80,000ps/nm

PMD tolerance : 25ps

コヒーレント光伝送における LDへの要求

For realization of large capacity & long haul WDM optical transmission

Significant distortion by Chromatic Dispersion and PMD

- **Trends to Narrow Signal Bandwidth**
- Multi-level Modulation Format DQPSK, QAM,
- Multi-Carrier Modulation O-OFDM
- High Sensitive Receiver Necessary
- Optical Coherent Detection

Tunable LO desirable for reducing # devices, backup

Narrow spectral linewidth & freq. stability necessary

2011年度 光通信システム Significance of Narrow Spectral Linewidth

M. Seimetz, OFC2008, OTuM2 (2008).

Reports of Semiconductor Lasers with Narrow Spectral Linewidth

2011年度

光通信システム

Schemes		Mechanism	Features Red : Pros Blue : Cons.	Δv
Solitary LD	Strained MQW DFB CPM DFB	α parameter \ spatial hole burning \	no mode hop	3.6kHz
	MQW DBR	α parameter \	small spatial hole burning $\rightarrow \Delta v$ mode hop	40kHz
	External Cavity DFB	Q 🖊	mode instability by phase mismatch	900kHz
Elec./Opt. Control	Electrical Feedback	Freq. noise detect → Bias current control	High sensitivity Narrower than Ouantum noise	250kHz
	Optical Feedback	Q /	FP resonator : wide bandwidth	10kHz
	Elec./Opt. Feedback	Opt. + Elec. feedback	complicated	7Hz

Schawlow-Towns Equation (with chirping)

$$\Delta v = \frac{v_g^2 \cdot h \, v \cdot n_{sp} \cdot \alpha_{th} \cdot (\alpha_{loss} + \alpha_{th})}{8\pi P_0} (1 + \alpha^2)$$

- v_g : group velocity
- h_V : photon energy
- n_{sp} : spontaneous emission rate
- α_{th} : threshold gain
- α_{loss} : optical loss
 - α : linewidth enhancement factor (α parameter)

2011年度 **Spectrum Narrowing Schemes (1)** 光诵信システム

Reducing α -parameter (lowering 1+ α^2) (1)

Ref. M. Ishida, N, Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, Appl. Phys. Lett., vol.85, pp.4145 (2004).

2011年度 光通信システム Narrow Spectral Linewidth DFB-LD (1)

M. Okai, M. Suzuki, and T. Taniwatari (Hitachi), Electron. Lett., vol.29, No.19, pp.1696-1697 (1993).

- External cavity laser (RIO product)
 - •gain chip + PLC-based Bragg grating
 - •Linewidth : 10kHz
 - \cdot Ith = 10mA
 - \cdot SMSR = 50dB
 - \cdot RIN = -0145dB/Hz
 - • λ -temp. dependence = 10pm/K
 - **·-5**~+75℃
 - 14pin butterfly module

2011年度 光通信システム DFB, DBR, or External-Cavity?

1 DFB-LD

- Spectral Linewidth < 10kHz</p>
- No mode-hop
- Complicated Grating
- **(2) DBR-LD**
 - Spectral Linewidth < 40kHz</p>
 - Wide tunability in single chip
 - Small spatial hole burning
 - Mode-hop
- **③** External-Cavity LD
- Spectral Linewidth < 10kHz</p>
- Small cavity loss
- Large footprint

2011年度 光通信システム Electrical Tuning or Thermal Tuning?

H. Ishii, F. Kano, Y. Tohmori, Y. Kondo, T. Tamamura, and Y. Yoshikuni, IEEE J. Selected Topics in Quantum Electron., vol.1, No.2, pp.401-407 (1995).

Electrical

Thermal

Δv (Thermal) < Δv (Electrical)

Allan Variance :10⁻⁹~10⁻⁸ (1s), 10⁻¹⁰~10⁻⁹ (10⁻³s)

OFDM

OFDM: Orthogonal Frequency Division Multiplexing 複数の搬送波(キャリア)を用いて1つの信号を伝送する手法

- 高スペクトル利用効率 → 限られた帯域を用いて高速化・伝送容量の増大
- 👂 1搬送波の帯域が狭く、分散の影響抑制可能
- 伝送路の品質に合わせて適応的に対応可能(雑音の多い周波数帯を抑制)

適用例

無線伝送(IEEE802.11a, g, n, WiMAX), 有線(ADSL), デジタル放送(地上デジタル)

周波数利用効率の向上へ (ナイキストWDM)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, E. Torrengo, and F. Forghieri, ECOC2010, Tu.3.A.4 (2010).

OFDMの高スペクトル利用効率のポイント

矩形波のフーリエスペクトル **f** 0 f_0 間隔で搬送波を配置すると、直交関係となり 各搬送波との相関をとることにより分離可能 スペクトル強度 周波数

OFDM信号波形とスペクトル(2)

OFDM伝送の送受信系

● 光デバイスへの要求条件:高い線形性(平均パワーの数倍のピークパワーまで)

OFDMの課題

Peak to Average Power Ratio (PAPR)が大きい

(例)モバイルWiMAXの仕様では振幅のダイナミックレンジは 振幅平均値の4~5倍必要

位相雑音に敏感

送受信器・LOへの位相安定性の要求

▶ 周波数オフセットに敏感

モバイル用途で重要(ドップラーシフトの影響)

Kim Roberts (Nortel), COIN2008, C-15-PM1-1-3.

100Gbps OFDM

2 × subcarriers 20GHz apart

50GHz ch space WDM : 9Tbps in C-band

1000km reach

Dispersion tolerance : ±50,000ps/nm

PMD tolerance : 20ps

12 WSS ROADMs

伝送実験例(1)

A. Sano, et al., ECOC2008, Th3E.1 (2008).

伝送実験例(2)

H. Takahashi, et al., ECOC2008, Th3E.1 (2008).

