Literature

Graham, D.A., R.C.Marshall and J-F.Richard (1990) "Differential Payments within a Bidder Coalition ant the Shapley Value," *American Economic Review*, **80**, 493-510.

Littlechild, S.C., and G. Owen (1973) "A Simple Expression for the Shapley Value in a Special Case," *Management Science*, **20**, 3,370-372.

Muto, S., M.Nakayama, J.Potters and S.Tijs (1988) "On Big Boss Games," *The Economic Studies Quarterly*, **39**, 303-321.

Oishi, T. and M.Nakayama (2009) "Anti-Dual of Economic Coalitional TU Games," *The Japanese Economic Review* **60**, 560-566.

Airport game v_A and bidder collusion game v_C

$$v_A(S) = -\max_{i \in S} c_i, \quad \forall S \subseteq N$$

with $c_1 > c_2 > \dots > c_n > 0$

$$v_C(S) = \begin{cases} c_1 - \max_{j \in N \setminus S} c_j & \text{if } 1 \in S \\ 0 & \text{if } 1 \notin S \end{cases}$$
with $c_1 > c_2 > \dots > c_n > 0$

$$(\max_{j \in N \setminus N} c_j := 0)$$

Anti-Dual TU Games (N, (-v)*)

• v^* is a dual of v:

$$v^*(S) := v(N) - v(N \setminus S) \quad \forall S \subseteq N$$

• $(-v)^*$ is the anti-dual of v

$$:=$$
 the dual of $(-v)$

$$(-v)^*(S) := -v(N) + v(N \setminus S) \quad \forall S \subseteq N$$

v_A and v_C are anti-duals each other

$$(-v_A)^* = v_C :$$

$$(-v_A)^*(S)$$

$$= -v_A(N) + v_A(N \setminus S)$$

$$= \max_{i \in N} c_i - \max_{i \in N \setminus S} c_i$$

$$= \begin{cases} c_1 - \max_{i \in N \setminus S} c_i, & \text{if } 1 \in S, \\ 0, & \text{if } 1 \notin S. \end{cases}$$

$$= v_C(S)$$

... continued

•
$$(-v_C)^* = v_A$$
:

$$(-v_C)^*(S)$$
= $-v_C(N) + v_C(N \setminus S)$
= $\begin{cases} -c_1 + c_1 - \max_{i \in S} c_i &= -\max_{i \in S} c_i, & \text{if } 1 \notin S, \\ -c_1 &= -\max_{i \in S} c_i, & \text{if } 1 \in S \end{cases}$
= $v_A(S)$

Lemma 1. Let v be any game and let a be any additive game defined by $a(S) = \sum_{i \in S} a_i$ for all $S \subseteq N$. Then, $\left(-((-v)^* + a)\right)^* = v - a$.

Prove this. (Problem antidual 1)

Remark: Letting $a \equiv 0$, $(-(-v)^*)^* = v$.

Airport game v_A is convex

$$c_{i(S)} := \max_{j \in S} c_j, \quad v_A(S) = -c_{i(S)} \quad \forall S \subseteq N$$

(1)
$$i(S \cup T) \in S \cap T$$

$$\Rightarrow v_A(S) = v_A(T) = v_A(S \cup T) = v_A(S \cap T)$$

(2)
$$i(S \cup T) \in S \setminus T$$

 $\Rightarrow v_A(S) = v_A(S \cup T); \ v_A(T) \le v_A(S \cap T)$

$$(3) \ i(S \cup T) \in T \setminus S$$

$$\Rightarrow v_A(T) = v_A(S \cup T); \ v_A(S) \le v_A(S \cap T)$$

$$\therefore v_A(S) + v_A(T) \le v_A(S \cup T) + v_A(S \cap T) \quad \forall S \subseteq N$$

Anti-Dual Convexity

• v is convex

$$\iff$$
 $(-v)^*$ is convex

 \therefore v_A and v_C are both convex

Proof of anti-dual convexity:

Let $S, T \subseteq N$ and assume that v is convex. Then,

$$(-v)^{*}(S) + (-v)^{*}(T)$$

$$= -[v(N) - v(N \setminus S)] - [v(N) - v(N \setminus T)]$$

$$= v(N \setminus S) + v(N \setminus T) - 2v(N)$$

$$\leq v((N \setminus S) \cup (N \setminus T)) + v((N \setminus S) \cap (N \setminus T)) - 2v(N)$$

$$= v(N \setminus (S \cap T)) + v(N \setminus (S \cup T)) - 2v(N)$$

$$= (-v)^{*}(S \cap T) + (-v)^{*}(S \cup T)$$

The converse follows from Lemma 1 by taking $a \equiv 0$.

Anti-Dual Nucleolus

• $(-v)^*$ is the anti-dual of v

$$(-v)^*(S) := (-v)(N) - (-v)(N \setminus S)$$
$$= -v(N) + v(N \setminus S), \quad \forall S \subseteq N$$

- the nucleolus of $v : \mu(v)$
- If v and $(-v)^*$ are both super additive, then

$$\mu((-v)^*) = -\mu(v)$$

Anti-Dual Core

For any pre-imputation x,

$$x(S) \ge v(S) \quad \forall S \subseteq N$$

$$\iff x(N \setminus S) \ge v(N \setminus S) \quad \forall S \subseteq N$$

$$\iff v^*(S) \ge x(S) \quad \forall S \subseteq N$$

$$\iff -x(S) \ge -v^*(S) \quad \forall S \subseteq N$$

$$\iff -x(S) \ge (-v)^*(S) \quad \forall S \subseteq N$$

Therefore

$$x \in Core(v) \iff -x \in Core((-v)^*)$$

Proof of $\mu((-v)^*) = -\mu(v)$

$$v(S) - x(S) = v(N) + (-v(N) + v(S)) - x(S)$$

$$= v(N) + (-v)^*(N \setminus S) - x(S)$$

$$= (-v)^*(N \setminus S) - (-x(N \setminus S))$$

$$\forall S \subseteq N$$

-x is a pre-imputation of anti-dual $(-v)^*$. Hence, the vectors of dissatisfaction in game v and $(-v)^*$ coincide each other.

$$\mu(v_A) = -\mu(v_C)$$

$$v_A = (-v_C)^*$$
 and $v_C = (-v_A)^*$

• v_A and v_C are both **convex**; hence, super additive

$$\therefore \quad \mu(v_A) = -\mu(v_C)$$

Bankruptcy game

$$v(S) = \max\left(0, E - \sum_{j \in N \setminus S} d_j\right) \quad \forall S \subseteq N$$

- **E**: estate of a bankrupt
- d_j : debt to $j \in N$ $E \leq \sum_{j \in N} d_j$
- v(S): amount guaranteed to S

Public good game

$$v(S) = \max\left(0, \sum_{i \in S} B_i - C\right) \quad \forall S \subseteq N$$

- $B_i > 0$: i's utility
- C > 0: cost of the public good

Strategically Equivalent Anti-Dual

 d^o is an additive game such that $d^o(S) = \sum_{i \in S} d_i$ (for all $S \subseteq N$)

For public good game v_p and bankruptcy game v_B :

$$(-v_B)^* = v_P - d^\circ$$
 and $(-v_P)^* = v_B - d^\circ$

where
$$C = E$$
, $B_i = d_i \ (\forall i \in N)$

Hence,
$$(-v_B)^*(S) = v_P(S) - d^{\circ}(S);$$

 $(-v_P)^*(S) = v_B(S) - d^{\circ}(S), \ \forall S \subseteq N$

Public good game v_P and Bankruptcy game v_B

$$(-v_B)^* = v_P - d^\circ$$
 and $(-v_P)^* = v_B - d^\circ$
where $C = E$, $B_i = d_i$ $(\forall i \in N)$

• v_P and v_B are convex; so that super additive

$$\mu(v_P) = \mu(v_P - d^o) + d$$

$$= \mu((-v_B)^*) + d = -\mu(v_B) + d$$

Proof of $\phi((-v)^*) = -\phi(v)$, continued

$$(-v)^*(S) := -v^*(S)$$

$$= -(v(N) - v(N \setminus S)) \quad \forall S \subseteq N$$

$$v^*(S \cup \{i\}) - v^*(S) = v(N \setminus S) - v(N \setminus (S \cup \{i\}))$$

$$= v(N \setminus S) - v((N \setminus S) \setminus \{i\})$$

$$\forall S \not\ni i.$$

$$\phi_{i}(v^{*}) = \frac{1}{n!} \sum_{S \subseteq N \setminus \{i\}} |S|!(n - |S| - 1)! \Big(v^{*}(S \cup \{i\}) - v^{*}(S)\Big)$$

$$= \frac{1}{n!} \sum_{N \setminus S \subseteq N} (n - |S| - 1)! |S|! \Big(v(N \setminus S) - v((N \setminus S) \setminus \{i\})\Big)$$

$$= \phi_{i}(v)$$

Anti-Dual Shapley Value $\phi((-v)^*)$

$$\phi((-v)^*) = -\phi(v)$$

Proof First of all,

$$\begin{split} \phi_i(-v) &= \frac{1}{n!} \sum_{S \subseteq N \setminus \{i\}} |S|! (n - |S| - 1)! \Big(-v(S \cup \{i\}) - (-v(S)) \Big) \\ &= -\frac{1}{n!} \sum_{S \subseteq N \setminus \{i\}} |S|! (n - |S| - 1)! \Big(v(S \cup \{i\}) - v(S) \Big) \\ &= -\phi_i(v) \end{split}$$

Anti-Dual Shapley Value

$$\therefore \phi((-v)^*) = \phi(-v^*)$$
$$= -\phi(v^*) = -\phi(v)$$

Compare:

anti-dual nucleolus $\mu((-v)^*)$ and core C

$$\mu((-v)^*) = -\mu(v)$$

$$x \in C(v) \iff (-x) \in C((-v)^*)$$

Airport game v_A and bidder collusion game v_C

$$v_A(S) = -\max_{i \in S} c_i, \quad \forall S \subseteq N$$

$$\text{with} \quad c_1 > c_2 > \dots > c_n > c_{n+1} = 0$$

$$v_C(S) = \begin{cases} c_1 - \max_{j \in N \setminus S} c_j & \text{if} \quad 1 \in S \\ 0 & \text{if} \quad 1 \notin S \end{cases}$$

$$\text{with} \quad c_1 > c_2 > \dots > c_n > c_{n+1} = 0$$

$$(\max_{j \in N \setminus N} c_j := 0)$$

Shapley value of airport game v_A : Interpretation

$$\phi(v_A)_n = -\frac{c_n - c_{n+1}}{n}$$

$$\phi(v_A)_{n-1} = -\frac{c_{n-1} - c_n}{n-1} - \frac{c_n - c_{n+1}}{n}$$

$$\phi(v_A)_{n-2} = -\frac{c_{n-2} - c_{n-1}}{n-2} - \frac{c_{n-1} - c_n}{n-1} - \frac{c_n - c_{n+1}}{n}$$
...

$$\phi(v_A)_1 = -(c_1 - c_2) - \sum_{i=2}^n \frac{c_i - c_{i+1}}{i}$$

Shapley value of airport game v_A

$$\phi(v_A)_j = -\phi(v_C)_j$$

$$= -\sum_{i=j}^n \frac{c_i - c_{i+1}}{i}, \quad \forall j \in \mathbb{N}$$

where

$$c_1 > c_2 > \cdots > c_n > c_{n+1} = 0$$

Shapley value of airport game v_A : Application

Sharing a taxi fare

 c_i := the fare for the *sole* passenger $i \in N$

Sharing the taxi fare *c1* among n passengers

$$\phi(v_A)_i = -\sum_{i=1}^n \frac{c_i - c_{i+1}}{i}$$

$$-\phi(v_A)_3 = \frac{1200}{3} = 400$$

$$-\phi(v_A)_2 = \frac{1800 - 1200}{2} + \frac{1200}{3} = 700$$

$$-\phi(v_A)_1 = \frac{3000 - 1800}{1} + \frac{1800 - 1200}{2} + \frac{1200}{3} = 1900$$

Shapley value of bidder collusion game v_C

$$\phi(v_C)_j = -\phi(v_A)_j$$

$$= \sum_{i=j}^n \frac{c_i - c_{i+1}}{i}, \quad \forall j \in \mathbb{N}$$

where

$$c_1 > c_2 > \cdots > c_n > c_{n+1} = 0$$

Sharing the taxi fare c1 among n passengers (2)

Sharing by the nucleolus $\mu(v_A)$ gives

$$-\mu(v_A)_3 = 600$$

-\pm(v_A)_2 = 600
-\pm(v_A)_1 = 1800

$$\max_{S \neq N,\emptyset} (v_A(S) - \varphi(v_A)(S)) = -400$$

> -600 = \max_{S \neq N,\Omega} (v_A(S) - \mu(v_A)(S))

Prove these facts. (Problem antidual 2)

Shapley value of bidder collusion game v_C

Ring and Knockout

- A(S):= English auction among the participants
 S ⊆ N
- $R \subseteq N$:= bidder collusion = ring, holding the ownership of the commodity
- $R' \subseteq R$ knockouts $R \setminus R'$ with a sole bidder $k \in R'$ defeating any of the member of $R \setminus R'$ in $A(\{k\} \cup R \setminus R')$

Shapley value of bidder collusion game v_C

$$\phi(v_C)_j = -\phi(v_A)_j = \sum_{i=j}^n \frac{c_i - c_{i+1}}{i}, \quad \forall j \in N$$

- N, the initial ring.
- $A(\{n-j\} \cup \{n-j+1\})$: the j-th knockout by $\{1, 2, ..., n-j\}$ against $\{n-j+1\}$ with the lowest bid c_{n-j} , for each j=1, ..., n-1.
- equal division of increment $c_i c_{i+1} > 0$ in the (n-i)-th knockout, for each $i = n, n-1, \ldots, 1$.

Proof (continued)

$$-v_{A}(S) := C(S) = \max_{i \in S} c_{i}$$

$$= \sum_{i=1}^{n} (c_{i} - c_{i+1}) V_{i}(S) \quad \forall S \subseteq N$$
where
$$V_{i}(S) = \begin{cases} 0 & \text{if } S \cap \{1, \dots, i-1, i\} = \emptyset \\ 1 & \text{if } S \cap \{1, \dots, i-1, i\} \neq \emptyset \end{cases}$$

$$\therefore \phi(C)_{j} = \sum_{i=1}^{n} \phi((c_{i} - c_{i+1}) V_{i})_{j} = \sum_{i=1}^{n} (c_{i} - c_{i+1}) \phi(V_{i})_{j}$$

Proof of $\varphi(v_A)$

$$\phi(v_C)_j = -\phi(v_A)_j$$

$$= \sum_{i=j}^n \frac{c_i - c_{i+1}}{i}, \quad \forall j \in \mathbb{N}$$

where

$$c_1 > c_2 > \cdots > c_n > c_{n+1} = 0$$

Proof (continued)

In game V_i ,

- $\forall k, l \in \{1, \dots, i-1, i\}$ are substitutes
- $\forall h \in \{i+1,\ldots,n\}$ is null

Hence, by the corresponding axioms

$$\phi(V_i)_j = \begin{cases} \frac{V_i(N)}{i} = \frac{1}{i} & \forall j \le i \\ 0 & \forall j > i \end{cases}$$

$$\therefore \ \phi(C)_j = \sum_{i=1}^n (c_i - c_{i+1}) \phi(V_i)_j = \sum_{i=j}^n \frac{c_i - c_{i+1}}{i}, \ \forall j \in N$$

Big Boss Games

 (N, v_{BB}) is a *Big Boss game* if it is *monotonic*, and satisfies

1.
$$v_{BB}(S) = 0$$
 if $1 \notin S$

2.
$$v_{BB}(N) - v_{BB}(N \setminus (N \setminus S))$$

 $\geq \sum_{i \in N \setminus S} m_i$ if $1 \in S$
where $m_i := v_{BB}(N) - v_{BB}(N \setminus \{i\})$ $\forall i \in N$.

Remark $m_i \ge 0 \ \forall i \in N$; v_{BB} is super additive.

Anti-Dual of Big Boss Games

The anti-dual (N, v_L) of a Big Boss game satisfies

$$v_L(S) \begin{cases} = v_L(N) & \text{if } 1 \in S \\ \leq \sum_{i \in S} v_L(\{i\}) & \text{if } 1 \notin S, \end{cases}$$

which might be called the leader game.

Remark
$$0 \ge v_L(\{i\}) \ge v_L(N)$$
; nevertheless, $v_L(N) \ge v_L(\{1\}) + \sum_{i \in N \setminus \{1\}} v_L(\{i\})$.

Example of Big Boss Games

• (N, v_B^1) : bankruptcy game with one big claimant :

$$v_B^1(S) = \begin{cases} E - d(N \setminus S) & \text{if } 1 \in S \\ 0 & \text{if } 1 \notin S \end{cases}$$

where $d_1 \ge E$, $d_2 + \cdots + d_n < E$

• (N, v_p^1) : public good game with one big agent :

$$v_P^1(S) = \begin{cases} B(S) - C & \text{if } 1 \in S \\ 0 & \text{if } 1 \notin S \end{cases}$$

where $B_1 > C$, $B_2 + \cdots + B_n \le C$

Nucleolus of Big Boss Games and Leader Games

$$\mu(v)$$
: the nucleolus of (N, v)

$$\mu(v_{BB}) = -\mu((-v_{BB})^*) = -\mu(v_L)$$

$$m_i := v_{BB}(N) - v_{BB}(N \setminus \{i\}) = -v_L(\{i\}) \quad \forall i \in N.$$

$$\mu(v_{BB}) = \begin{cases} v_{BB}(N) - \frac{1}{2} \sum_{j \in N \setminus \{1\}} m_j & \text{if } i = 1\\ \frac{1}{2} m_i & \text{if } i \neq 1 \end{cases}$$

$$\mu(v_L) = \begin{cases} v_L(N) - \frac{1}{2} \sum_{j \in N \setminus \{1\}} v_L(\{j\}) & \text{if } i = 1\\ \frac{1}{2} v_L(\{i\}) & \text{if } i \neq 1 \end{cases}$$

Nucleolus of Big Boss Games and Leader Games

Proof. Let $z = \mu(v_L)$. Then

$$v_{L}(\{i\}) - z_{i} = \frac{1}{2}v_{L}(\{i\}) \qquad \text{if } i \neq 1$$

$$v_{L}(N \setminus \{i\}) - z(N \setminus \{i\}) = v_{L}(N \setminus \{i\}) - z(N) + z_{i}$$

$$= z_{i} = \frac{1}{2}v_{L}(\{i\}) \qquad \text{if } i \neq 1$$

$$v_{L}(S) - z(S) \leq \sum_{j \in S} \frac{1}{2}v_{L}(\{j\}) \leq \frac{1}{2}v_{L}(\{j\}) \text{ if } S \not\ni 1, \ j \in S$$

$$v_{L}(S) - z(S) = \sum_{i \in N \setminus S} \frac{1}{2}v_{L}(\{j\}) \leq \frac{1}{2}v_{L}(\{j\}) \text{ if } N \supsetneq S \ni 1, \ j \notin S$$

Taking any $x \neq z$, we necessarily have $x_i > z_i$ or $x_i < z_i$ for some $i \neq 1$, which leads to the conclusion.

The Bankruptcy Game and the Self-Duality of the Nucleolus

Dvision Rule from the Talmud

	$d_1 = 300$	$d_2=200$	$d_3=100$
(a): E = 100	100/3	100/3	100/3
(b): E = 200	75	75	50
(c): E = 300	150	100	50

(a) Equal division(b) Unknown

The Nucleolus and the Shapley Value of Convex Big Boss Games

 $\phi(v)$: Shapley value of game v

Proposition : If the leader game v_L is super additive, then

$$\mu(v_L) = \phi(v_L)$$
 and $\mu(v_{BB}) = \phi(v_{BB})$

Proof: Obtain $\phi(v_L)_i = \frac{1}{2}v_L(\{i\})$ for $i \neq 1$ by direct calculation, where v_L is given, due to the super additivity, as follows.

$$v_L(S) = \begin{cases} v_L(N) & \text{if } 1 \in S, \\ \sum_{i \in S} v_L(\{i\}) & \text{if } 1 \notin S. \end{cases}$$

Try to complete the proof (Problem antidual 3).

The Nucleolus

The Bankruptcy Game

$$v_{E;d}(S) = \left(E - \sum_{j \in N \setminus S} d_j\right)_+ \quad \forall S \subseteq N$$

- *E*: estate of the bankrupt
- d_i : debt to creditor $j \in N$

$$E \leq \sum_{j \in N} d_j := D; \quad d_1 \geq \cdots \geq d_n$$

• $v_{E,d}(S)$: amount S secures for itself

The Nucleolus of the Bankruptcy Game

Assumption 1. $E \le \frac{D}{2}$ i.e., cases 1 and 2 below

Remark 1. The case: $E \ge \frac{D}{2}$ can be obtained by the self-duality, $\mu(v_{E;d}) = d - \mu(v_{D-E;d})$.

case 1:
$$E \leq \frac{nd_n}{2}$$

$$\mu(v_{E;d})_i = \frac{E}{n}, \quad i = 1, \dots, n.$$

The Bankruptcy Game and the Self-Duality of the Nucleolus

$$v_{D-E;d}(S) = \left(D - E - d(N \setminus S)\right)_{+}$$

$$= \left(d(S) - E\right)_{+}, \quad \forall S \subseteq N$$

$$: \text{ public good game !}$$

$$v_{D-E;d} = \left(-v_{E;d}\right)^{*} + d^{\circ}$$

Hence, the self-duality:

$$\mu(v_{E;d}) = d - \mu(v_{D-E;d})$$

case 2: For
$$m = 0, 1, ..., n - 2$$
, if

$$\frac{1}{2} \left(D - \sum_{j=1}^{n-m} (d_j - d_{n-m}) \right) \le E \le \frac{1}{2} \left(D - \sum_{j=1}^{n-m-1} (d_j - d_{n-m-1}) \right)$$

then,

$$\mu(v_{E;d})_i = \frac{d_i}{2}, \quad i = n, n - 1, \dots, n - m$$

$$\mu(v_{E;d})_i = \frac{d_{n-m}}{2} + \frac{1}{n - m - 1} \left(E - \frac{D - \sum_{j=1}^{n-m} (d_j - d_{n-m})}{2} \right),$$

$$i = n - m - 1, n - m - 2, \dots, 1.$$