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Thus,
1

VE+1
is the minimal optimal solution of ¢y, 1(x).
Finally, from what we proved so far and from the definition

T = Vg = [(1 = ap)mvr + arpyy, — canf'(yy)]

Pe1(Yp) = Gorr + 5 Ye — vl

= (1 —ar)ow(ye) + onf(yy) (2.4)

= (1—aw) (65 + %y, — vall®) + awf(yp).
Now,

Vi1 — Yy = (1 = ar)ve(vr — yi) — ' (yp)] -
Y41
Therefore,
e vp —yill® = 27,1“ (1 = an)* % llve — yill® + oL (yi)|I? (2.5)
=20, (1 — ) f' (Yr)s vk — Yi)] -

Substituting (2.5) into (2.4), we obtain the expression for ¢y . 1

Theorem 2.6.5 Consider f € S;’71L(R"), possible with © = 0 (which means that f €
.7:271(]1@”)) For a given xp,vg € R" and L > vy > u > 0, let us choose ¢f = f(xo).

Define the sequences {ou}720, {Vk}izo: {YUntizor 1Zr}i0r {V}i20, {08}020, and {dx )32,
as follows:

ar € (0,1)  root of  Lai = (1 — ap)Vk + Quft = Ves1,
EVEVE + Ve+1Tk
Vi + gl

. 1 !
@) is such that f(xri1) < f(yg) — i”f (v,

Y =

Vi1 = (1 — ap)yevr + appy, — arf' (Y],
Ve+1
* * O(% / 2
Gin= (- a)oi+anf(y) — 5o (w0
Vk+1
ap(l —aw)yw (1
OO (M 2 4 (). w))
Ve+1
* Yk
Pry1(x) = ¢k+1 + _2+1 |l — 'Uk+1||2'

Then, we satisfy all the conditions of Lemma 2.6.2.

Proof: In fact, it just remains to show that f(z) < ¢} and Y >, ap = o0,
For k =0, f(xy) < ¢§. Suppose that induction hypothesis is valid for k, and due to the
previous lemma,

2

ay ' 2
S )l

1 = (1 —an)dy +anflyy) —



38 CHAPTER 2. SMOOTH CONVEX OPTIMIZATION

+Oék(1 — Oék)’yk
Ve+1

> (L= o) f(zr) + anflyy) —

i Oék(l — ozk)’yk
Yk+1

(7' @) ox = y3) + Sllye — wall?)

2
ay

1f (i) I?

2Vk+1

((f’(yk),vk —yp) + gHyk E ka?) .

Now, since f(x) is convex, f(x) > f(y;) + (f'(yi), Tx — yy,), and we have:

2
Qg

1 P+ () (), S (g b gy S Ot 1,

2V Vie+1 21
Recall that since f’ is L-Lipschitz continuous, if we apply Theorem 2.1.8 to y, and xx,1 =
Y, — 1/ (yx), we obtain

¢Z+1 > flyp)—

Fl) — 5 IF @l 2 Flre).

Therefore, if we impose
OV

Yr41
it justifies our choice for y,. And putting

(Ve —yp) + T —y, =0

2
Qg 1

X1 2L

it justifies our choice for ay,. Since > 0, we finally obtain ¢, > f(xk41) as wished.
Now, Y1 = Laj, = (1 — ag)y, + app, and since L > 7o > p, we have oy, € [/5,1) and
L >~ > pu. Therefore, Y o oy = 0. 1

We arrive finally at the following optimal gradient method

General Scheme for the Optimal Gradient Method
Step 0: Choose g € R", L > vy > > 0, set vy :=xg, k=0
Step 1: Compute a; € [\/£,1) from the equation Laj = (1 — ag)y, + oupe
Step 2: Set 1 1= (1 — ap)y + arpt, Yy, == %
Step 3: Compute f(y;) and f'(y;)
Step 4: Find @y such that f(xp1) < f(yy) — 30|/ (yx)||? using “line search”
Step 5: Set vy = (1_%)%%”’““%_a"'f/(y’“), k:=k+1 and go to Step 1

Ve+1

Theorem 2.6.6 Consider f € S;’}L(R"), possible with ¢ = 0 (which means that f €
F 1’lL(R")). The general scheme of the optimal gradient method generates a sequence
{z,}72, such that

@) = < [ f@o) + Dl ol - £7].

where \yp = 1 and \;, = Hfz_ol(l — ;). Moreover,

M= mm{<1 B \/%)k (2ﬁj-Lw%)2}'
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Proof:  The first part is obvious from the definition and Lemma 2.6.2.
We already now that oy > \/%, therefore,

k
N =0 (1— ) < (1 - \/%> :

Let us prove first that v > 70Ax. Obviously 79 = YA, and assuming the induction
hypothesis,

Vi1 = (1 — o) ve + ompr > (1 — ap)ye > (1 — ) Yo e = Yorit1-

Therefore, La? = g1 > YoAer1- Since A is a decreasing sequence

1 L V%=V e Ak — Akt

Vi VA VAN VA (VA + V)

)\k - )\k+1 . )\k — (1 — Odk))\k (673 S 2 1 ’}/0

206/ Akt a 206/ Akt 2y 2 L

1 k Yo
> 14— 2
VT 2V L

and we have the result. 1

v

Thus

Theorem 2.6.7 Consider f € Si’}L(R"), possible with g = 0 (which means that f €
FUL(R™)). If we take 7o = L, the general scheme of the optimal gradient method generates
a sequence {xy}72, such that

fla) — 1 < Lmin{(l - \/%)ﬁ} o — 2|

This means that it is optimal for the class of functions from S L (R") with g > 0, or
f-l ,1 (Rn)

Proof: ~ The inequality follows from the previous theorem and f(xo) — f(x*) <

(f'(@"), 2o — x*) + §llzo — 2|
Let us analyze first the case when p > 0. From Theorem 2.4.1, we know that we can
find functions such that

2k
fla) - =4 (—VL/’H> o — 2| > & exp (—L) o — |,

VL/p+1
= —In(4) > 1 - % > 2 for

where the second inequality follows from In( +1) o —= 1,
€ (1,4+00). Therefore, the worst case bound to find @ such that f(xy) — f* < € can not

be better than

A/ L/in—1 1

/€>/—'u ln——i—lnﬁ—i—ZlnHwo—a}*H )
4 5 2
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On the other hand, from the above result

k
flae) = f* < Lllwo — 2| (1 B \/%) < Ly — @*|2exp (_ \Ti//@ ) ,

where the second inequality follows from In(1 — a) < —a, a < 1.Therefore, we can guar-
antee that k > \/L/p (Inl+InL+ 2|z — *|]).
For the case p = 0, the conclusion is obvious from Theorem 2.2.1. 1

Now, instead of doing line search at Step 4 of the general scheme for the optimal gradient

method, let us consider the constant step size iteration @1 = y, — 1/ (y,). From the
calculation given at Exercise 9, we arrive to the following simplified scheme:

Constant Step Scheme for the Optimal Gradient Method

Step 0: Choose xy € R", ap € (0,1) such that u < %ﬁ;“) < L, set y,:=xp, k:=0
Step 1: Compute f(y;) and f'(y;)

Step 2:  Set @yy1 =y, — 1./ (yy)

Step 3: Compute a1 € (0,1) from the equation of ,; = (1 — agy1)af + i1 /L
Step 4: Set (i := %

Step 5: Set Y., == Tp+1 + Be(Trp1 — @), k =k + 1 and go to Step 1

The rate of convergence of the above method is the same as Theorem 2.6.6 for vy =
ag(agLl — p) /(1 — o), and of the Theorem 2.6.7.

2.7 Extension for “simple” convex sets

We are interested now to solve the following problem:

min  f(x)
[ ”

where () is a closed convex set simple enough to have an easy projection onto it, e.g., positive

orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 2.7.1 Let f € F'(R") and Q be a closed convex set. The point z* is a solution
of (2.6) if and only if
(f(x*),x —x*) >0, VxeqQ.

Proof: Indeed, if the inequality is true,
f(@) = f(&") +(f(z"),z —x) > f(z") VzeQ.

Let x* be an optimal solution of the minimization problem (2.6). Assume by con-
tradiction that there is a @ € @ such that (f'(x*),x — x*) < 0. Consider the function
o(a) = f(x*+a(x—ax*)) for a € [0,1]. Then, ¢(0) = f(x*) and ¢'(0) = (f'(z*),z—x*) < 0.

Therefore, for a > 0 small enough, we have

fl@® +a(x—x")) = (o) < ¢(0) = f(x")

which is a contradiction. 1
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Definition 2.7.2 Let f € C'(R"), Q a closed convex set, & € R”, and v > 0. Denote by

8

|
8l
+
21
B

|
8

xo(x;y) = arg mingcq [f(j;) +(f(2),
9o(@;7) = (@ —2o(Z;7)).

We call g, (®;7) the gradient mapping of f on Q.

Theorem 2.7.3 Let f € S}L’}L(R”), v > L, and & € R". Then

f(x) > f(xq(®;7)) + (9o (T;7), ¢ — Z) + —HQQ( NI? + —||«’L’ —z|?, VzeQ.

Proof: Denote &g = xo(Z;7) and go = go(Z;7). Let ¢(x) = f(2) + (f'(z),x — x) +
3l — .

Then ¢/(x) = f'() + y(x — ), and for Va € @), we have

(f'(®) —gq, @ —mq) = (¢ (2q), T — ) 2 0,

due to Lemma 2.7.1.
Hence,

J@) - Ele—al” = f@+(f(@)z-2)

= f(@)+{['(@). & —x0) + {f'(®), xq — &)
> f(@)+ <gQ,m—mQ> +{f'(@), 20 — 2)
= d(zq) — —||=’BQ —z|” + (gg,  — ©g)
= ¢(zq) — ﬂHgQ”2 + (g9, T — xq)
— lag) - %uggw T {gg@ — 20) + (g0, @ — &)
— o)+ %Hggnz T (gg @ — ).

Since v > L, ¢(xg) > f(xg), and we have the result. 1

We are ready to define our estimated sequence. Assume that f € S;IL(R”) possible with
1t =0 (which means that f € F};'(R")), 2 € Q, and vy > 0. Define

(@) = f(@o)+ e -
@) = (1= an)6u@) + o |[(wolyis ) + 5 laouss DI + (go(uis v ~ i)

W
+ll —yil?)
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for the sequences {ay}52, and {y,}2>, which will be defined later.
Similarly, we can prove that {¢(x)}72, can be written in the form

x , k
ou(@) = 6 + Ll — v
for ¢ = f(x0), vo = xo:
Yip1 = (1 —aw)ye + app
1

Vpy1 = (1 — aw)vwor + arpyy, — argo(yy; L)),
Vk+1

2
s = (1= i+ ol (walui D) + (55— 52 ) lgo(uss LI

+Oék(1 — Ofk)’)’k (
Ve+1

o
Sllyi = vl + (g0 (yei L) vi —w) ) -

Now, ¢ > f(xo). Assuming that ¢} > f(xx),

2
Prr = (I —ap)f(zr) + oanf(xo(y L)) + (;—Z — 23:;) 9oy D)|?

+Oék(1 — Oék)’}/k<

90 (Ui L), v — yy)

Ve+1
> f(oly -L>>+(1 i )ug (s DI
- Nk 2L 2% A
ey
(1 — ) (go(yu: L), —2(vg — yi) + 1 — ),
V+1

where the last inequality follows from Theorem 2.7.3.
Therefore, if we choose

Lpy1 = mQ(ym L),
Loy = (1—ap)ye + ot = Yas,
1
= —— (Vv + L),
Y 'Vk+akﬂ( EVEVE T Vi+1 k)

we obtain ¢, > f(2p41) as desired.

Constant Step Scheme for the Optimal Gradient Method

Step 0: Choose xy € R", ap € (0,1) such that u < %@L[;“) < L, set y,:=xp, k:=0
Step 1: Compute f(y;) and f'(y;)

Step 2: Set xy11 :=zo(y;; L)

Step 3: Compute oyq1 € (0,1) from the equation of ,; = (1 — agy1)af + pvir /L
Step 4: Set (3 := =)

2 .
ak+ak+1

Step 5: Set Y., = ®ps1 + Se(Trp1 — @), k =k + 1 and go to Step 1

The rate of converge of this algorithm is exactly the same as the previous ones.
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2.8 Further reading

1. Obviously, the first reading should be the continuation of [NESTEROV2004|, where
Nesterov extends the method for constrained minimization, min-max type problems,
and non-differentiable problems.

2. A more general approach and variations can be found in [DASPREMONT2008, LLM2006,
NESTEROV2005, NESTEROV2005-2, NESTEROV2007, NESTERV0O2009, TSENG2010],
ete.

2.9 Exercises

1. Prove Theorem 2.1.2.

2. Prove Lemma 2.1.3.

3. Prove Theorem 2.1.5.

4. Prove Corollary 2.3.3.

5. Prove Theorem 2.3.4.

6. Prove Theorem 2.3.6.

7. Prove Corollary 2.5.2.

8. Complete the prove of Lemma 2.6.3.

9. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This
is a particular case of the general optimal gradient method for the following choice:

Ver1 = Log = (1 — o)y + app
QEVeVE + Vi+1Tk
Vi + Qg

Y, =

1
Tpy1 = yk_Zf/(yk)

(1 — a) vk + arpyy, — o f'(yy)
Vg1 = .
Yk+1

a) Show that vy 1 = xy + aik(zckﬂ —xp).

(
(b) Show that y, 1 = Tr1 + Br(Tr1 — @) for G = Wm
(¢) Show that 3, = 2&i=ox)

2 .
oy okt

)
)
)
)

(d) Explain why af_; = (1 — agq1)og + Foyr.
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