Thus,

$$\boldsymbol{x} = \boldsymbol{v}_{k+1} = \frac{1}{\gamma_{k+1}} \left[(1 - \alpha_k) \gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k f'(\boldsymbol{y}_k) \right]$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.

Finally, from what we proved so far and from the definition

$$\phi_{k+1}(\boldsymbol{y}_k) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_{k+1}\|^2$$

$$= (1 - \alpha_k)\phi_k(\boldsymbol{y}_k) + \alpha_k f(\boldsymbol{y}_k)$$

$$= (1 - \alpha_k) \left(\phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2\right) + \alpha_k f(\boldsymbol{y}_k).$$
(2.4)

Now,

$$\boldsymbol{v}_{k+1} - \boldsymbol{y}_k = \frac{1}{\gamma_{k+1}} \left[(1 - \alpha_k) \gamma_k (\boldsymbol{v}_k - \boldsymbol{y}_k) - \alpha_k f'(\boldsymbol{y}_k) \right].$$

Therefore,

$$\frac{\gamma_{k+1}}{2} \|\boldsymbol{v}_{k+1} - \boldsymbol{y}_{k}\|^{2} = \frac{1}{2\gamma_{k+1}} \left[(1 - \alpha_{k})^{2} \gamma_{k}^{2} \|\boldsymbol{v}_{k} - \boldsymbol{y}_{k}\|^{2} + \alpha_{k}^{2} \|f'(\boldsymbol{y}_{k})\|^{2} - 2\alpha_{k} (1 - \alpha_{k}) \gamma_{k} \langle f'(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right].$$
(2.5)

Substituting (2.5) into (2.4), we obtain the expression for ϕ_{k+1}^* .

Theorem 2.6.5 Consider $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$). For a given $\boldsymbol{x}_0, \boldsymbol{v}_0 \in \mathbb{R}^n$ and $L \geq \gamma_0 \geq \mu \geq 0$, let us choose $\phi_0^* = f(\boldsymbol{x}_0)$. Define the sequences $\{\alpha_k\}_{k=0}^{\infty}$, $\{\gamma_k\}_{k=0}^{\infty}$, $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$, $\{\boldsymbol{x}_k\}_{k=0}^{\infty}$, $\{\boldsymbol{v}_k\}_{k=0}^{\infty}$, $\{\phi_k^*\}_{k=0}^{\infty}$, and $\{\phi_k\}_{k=0}^{\infty}$ as follows:

$$\alpha_k \in (0,1) \quad \text{root of} \quad L\alpha_k^2 = (1-\alpha_k)\gamma_k + \alpha_k\mu \equiv \gamma_{k+1},$$

$$\boldsymbol{y}_k = \frac{\alpha_k\gamma_k\boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k}{\gamma_k + \alpha_k\mu},$$

$$\boldsymbol{x}_k \quad \text{is such that} \quad f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{y}_k) - \frac{1}{2L}\|f'(\boldsymbol{y}_k)\|^2,$$

$$\boldsymbol{v}_{k+1} = \frac{1}{\gamma_{k+1}}[(1-\alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_kf'(\boldsymbol{y}_k)],$$

$$\phi_{k+1}^* = (1-\alpha_k)\phi_k^* + \alpha_kf(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}}\|f'(\boldsymbol{y}_k)\|^2$$

$$+ \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 + \langle f'(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k\rangle\right),$$

$$\phi_{k+1}(\boldsymbol{x}) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2}\|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|^2.$$

Then, we satisfy all the conditions of Lemma 2.6.2.

Proof: In fact, it just remains to show that $f(\boldsymbol{x}_k) \leq \phi_k^*$ and $\sum_{k=1}^{\infty} \alpha_k = \infty$. For k = 0, $f(\boldsymbol{x}_0) \leq \phi_0^*$. Suppose that induction hypothesis is valid for k, and due to the previous lemma,

$$\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} ||f'(\boldsymbol{y}_k)||^2$$

$$+ \frac{\alpha_k (1 - \alpha_k) \gamma_k}{\gamma_{k+1}} \left(\langle f'(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 \right)$$

$$\geq (1 - \alpha_k) f(\boldsymbol{x}_k) + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|f'(\boldsymbol{y}_k)\|^2$$

$$+ \frac{\alpha_k (1 - \alpha_k) \gamma_k}{\gamma_{k+1}} \left(\langle f'(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 \right).$$

Now, since f(x) is convex, $f(x_k) \ge f(y_k) + \langle f'(y_k), x_k - y_k \rangle$, and we have:

$$\phi_{k+1}^* \geq f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|f'(\boldsymbol{y}_k)\|^2 + (1-\alpha_k)\langle f'(\boldsymbol{y}_k), \frac{\alpha_k\gamma_k}{\gamma_{k+1}}(\boldsymbol{v}_k - \boldsymbol{y}_k) + \boldsymbol{x}_k - \boldsymbol{y}_k\rangle + \frac{\alpha_k(1-\alpha_k)\gamma_k\mu}{2\gamma_{k+1}} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2.$$

Recall that since f' is L-Lipschitz continuous, if we apply Theorem 2.1.8 to y_k and x_{k+1} $\boldsymbol{y}_k - \frac{1}{L} f'(\boldsymbol{y}_k)$, we obtain

$$f(\boldsymbol{y}_k) - \frac{1}{2L} \|f'(\boldsymbol{y}_k)\|^2 \ge f(\boldsymbol{x}_{k+1}).$$

Therefore, if we impose

$$rac{lpha_k \gamma_k}{\gamma_{k+1}} (oldsymbol{v}_k - oldsymbol{y}_k) + oldsymbol{x}_k - oldsymbol{y}_k = oldsymbol{0}$$

it justifies our choice for y_k . And putting

$$\frac{\alpha_k^2}{2\gamma_{k+1}} = \frac{1}{2L}$$

it justifies our choice for α_k . Since $\mu \geq 0$, we finally obtain $\phi_{k+1}^* \geq f(\boldsymbol{x}_{k+1})$ as wished.

Now, $\gamma_{k+1} = L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu$, and since $L \geq \gamma_0 \geq \mu$, we have $\alpha_k \in [\sqrt{\frac{\mu}{L}}, 1)$ and $L \geq \gamma_k \geq \mu$. Therefore, $\sum_{k=1}^{\infty} \alpha_k = \infty$.

We arrive finally at the following optimal gradient method

General Scheme for the Optimal Gradient Method

Choose $\boldsymbol{x}_0 \in \mathbb{R}^n$, $L \ge \gamma_0 \ge \mu \ge 0$, set $\boldsymbol{v}_0 := \boldsymbol{x}_0$, k := 0

Compute $\alpha_k \in [\sqrt{\frac{\mu}{L}}, 1)$ from the equation $L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k \mu$ Set $\gamma_{k+1} := (1 - \alpha_k)\gamma_k + \alpha_k \mu$, $\boldsymbol{y}_k := \frac{\alpha_k \gamma_k \boldsymbol{v}_k + \gamma_{k+1} \boldsymbol{x}_k}{\gamma_k + \alpha_k \mu}$ Step 1:

Step 2:

Step 3: Compute $f(\boldsymbol{y}_k)$ and $f'(\boldsymbol{y}_k)$

Find \boldsymbol{x}_{k+1} such that $f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{y}_k) - \frac{1}{2L} \|f'(\boldsymbol{y}_k)\|^2$ using "line search" Set $\boldsymbol{v}_{k+1} := \frac{(1-\alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k f'(\boldsymbol{y}_k)}{\gamma_{k+1}}$, k := k+1 and go to Step 1

Theorem 2.6.6 Consider $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in$ $\mathcal{F}^{1,1}L(\mathbb{R}^n)$). The general scheme of the optimal gradient method generates a sequence $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ such that

$$f(x_k) - f^* \le \lambda_k \left[f(x_0) + \frac{\gamma_0}{2} ||x^* - x_0||^2 - f^* \right],$$

where $\lambda_0 = 1$ and $\lambda_k = \prod_{i=0}^{k-1} (1 - \alpha_i)$. Moreover,

$$\lambda_k \le \min \left\{ \left(1 - \sqrt{\frac{\mu}{L}} \right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\gamma_0})^2} \right\}.$$

Proof: The first part is obvious from the definition and Lemma 2.6.2. We already now that $\alpha_k \geq \sqrt{\frac{\mu}{L}}$, therefore,

$$\lambda_k = \prod_{i=0}^{k-1} (1 - \alpha_i) \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^k.$$

Let us prove first that $\gamma_k \geq \gamma_0 \lambda_k$. Obviously $\gamma_0 = \gamma_0 \lambda_0$, and assuming the induction hypothesis,

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu \ge (1 - \alpha_k)\gamma_k \ge (1 - \alpha_k)\gamma_0 \lambda_k = \gamma_0 \lambda_{k+1}.$$

Therefore, $L\alpha_k^2 = \gamma_{k+1} \ge \gamma_0 \lambda_{k+1}$. Since λ_k is a decreasing sequence

$$\frac{1}{\sqrt{\lambda_{k+1}}} - \frac{1}{\sqrt{\lambda_k}} = \frac{\sqrt{\lambda_k} - \sqrt{\lambda_{k+1}}}{\sqrt{\lambda_k \lambda_{k+1}}} = \frac{\lambda_k - \lambda_{k+1}}{\sqrt{\lambda_k \lambda_{k+1}}(\sqrt{\lambda_k} + \sqrt{\lambda_{k+1}})}$$

$$\geq \frac{\lambda_k - \lambda_{k+1}}{2\lambda_k \sqrt{\lambda_{k+1}}} = \frac{\lambda_k - (1 - \alpha_k)\lambda_k}{2\lambda_k \sqrt{\lambda_{k+1}}} = \frac{\alpha_k}{2\sqrt{\lambda_{k+1}}} \geq \frac{1}{2}\sqrt{\frac{\gamma_0}{L}}.$$

Thus

$$\frac{1}{\sqrt{\lambda_k}} \ge 1 + \frac{k}{2} \sqrt{\frac{\gamma_0}{L}}$$

and we have the result.

Theorem 2.6.7 Consider $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}^{1,1}L(\mathbb{R}^n)$). If we take $\gamma_0 = L$, the general scheme of the optimal gradient method generates a sequence $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ such that

$$f(\boldsymbol{x}_k) - f^* \le L \min \left\{ \left(1 - \sqrt{\frac{\mu}{L}} \right)^k, \frac{4}{(k+2)^2} \right\} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2.$$

This means that it is optimal for the class of functions from $\mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ with $\mu > 0$, or $\mathcal{F}_L^{1,1}(\mathbb{R}^n)$.

Proof: The inequality follows from the previous theorem and $f(\boldsymbol{x}_0) - f(\boldsymbol{x}^*) \le \langle f'(\boldsymbol{x}^*), \boldsymbol{x}_0 - \boldsymbol{x}^* \rangle + \frac{L}{2} ||\boldsymbol{x}_0 - \boldsymbol{x}^*||^2$.

Let us analyze first the case when $\mu > 0$. From Theorem 2.4.1, we know that we can find functions such that

$$f(\boldsymbol{x}_k) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1} \right)^{2k} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 \ge \frac{\mu}{2} \exp\left(-\frac{4k}{\sqrt{L/\mu} - 1} \right) \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2,$$

where the second inequality follows from $\ln(\frac{a-1}{a+1}) = -\ln(\frac{a+1}{a-1}) \ge 1 - \frac{a+1}{a-1} \ge -\frac{2}{a-1}$, for $a \in (1, +\infty)$. Therefore, the worst case bound to find \boldsymbol{x}_k such that $f(\boldsymbol{x}_k) - f^* < \varepsilon$ can not be better than

$$k > \frac{\sqrt{L/\mu} - 1}{4} \left(\ln \frac{1}{\varepsilon} + \ln \frac{\mu}{2} + 2 \ln \|\boldsymbol{x}_0 - \boldsymbol{x}^*\| \right).$$

On the other hand, from the above result

$$f(x_k) - f^* \le L ||x_0 - x^*||^2 \left(1 - \sqrt{\frac{\mu}{L}}\right)^k \le L ||x_0 - x^*||^2 \exp\left(-\frac{k}{\sqrt{L/\mu}}\right),$$

where the second inequality follows from $\ln(1-a) \le -a$, a < 1. Therefore, we can guarantee that $k \ge \sqrt{L/\mu} \left(\ln \frac{1}{\varepsilon} + \ln L + 2 \ln \|\boldsymbol{x}_0 - \boldsymbol{x}^*\| \right)$.

For the case $\mu = 0$, the conclusion is obvious from Theorem 2.2.1.

Now, instead of doing line search at Step 4 of the general scheme for the optimal gradient method, let us consider the constant step size iteration $\boldsymbol{x}_{k+1} = \boldsymbol{y}_k - \frac{1}{L}f'(\boldsymbol{y}_k)$. From the calculation given at Exercise 9, we arrive to the following simplified scheme:

	Constant Step Scheme for the Optimal Gradient Method
Step 0:	Choose $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\alpha_0 \in (0,1)$ such that $\mu \leq \frac{\alpha_0(\alpha_0 L - \mu)}{1 - \alpha_0} \leq L$, set $\boldsymbol{y}_0 := \boldsymbol{x}_0, k := 0$
Step 1:	Compute $f(\boldsymbol{y}_k)$ and $f'(\boldsymbol{y}_k)$
Step 2:	Set $oldsymbol{x}_{k+1} := oldsymbol{y}_k - rac{1}{L}f'(oldsymbol{y}_k)$
Step 3:	Compute $\alpha_{k+1} \in (0,1)$ from the equation $\alpha_{k+1}^2 = (1-\alpha_{k+1})\alpha_k^2 + \mu\alpha_{k+1}/L$
Step 4:	Set $\beta_k := \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$.
	Set $y_{k+1} := x_{k+1} + \beta_k(x_{k+1} - x_k), k := k+1$ and go to Step 1

The rate of convergence of the above method is the same as Theorem 2.6.6 for $\gamma_0 = \alpha_0(\alpha_0 L - \mu)/(1 - \alpha_0)$, and of the Theorem 2.6.7.

2.7 Extension for "simple" convex sets

We are interested now to solve the following problem:

$$\begin{cases}
\min \quad f(\boldsymbol{x}) \\
\boldsymbol{x} \in Q
\end{cases} \tag{2.6}$$

where Q is a closed convex set simple enough to have an easy projection onto it, e.g., positive orthant, n dimensional box, simplex, Euclidean ball, etc.

Lemma 2.7.1 Let $f \in \mathcal{F}^1(\mathbb{R}^n)$ and Q be a closed convex set. The point \boldsymbol{x}^* is a solution of (2.6) if and only if

$$\langle f'(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \ge 0, \quad \forall \boldsymbol{x} \in Q.$$

Proof: Indeed, if the inequality is true,

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) + \langle f'(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle \ge f(\boldsymbol{x}^*) \quad \forall \boldsymbol{x} \in Q.$$

Let \mathbf{x}^* be an optimal solution of the minimization problem (2.6). Assume by contradiction that there is a $\mathbf{x} \in Q$ such that $\langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle < 0$. Consider the function $\phi(\alpha) = f(\mathbf{x}^* + \alpha(\mathbf{x} - \mathbf{x}^*))$ for $\alpha \in [0, 1]$. Then, $\phi(0) = f(\mathbf{x}^*)$ and $\phi'(0) = \langle f'(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle < 0$. Therefore, for $\alpha > 0$ small enough, we have

$$f(\boldsymbol{x}^* + \alpha(\boldsymbol{x} - \boldsymbol{x}^*)) = \phi(\alpha) < \phi(0) = f(\boldsymbol{x}^*)$$

which is a contradiction.

Definition 2.7.2 Let $f \in \mathcal{C}^1(\mathbb{R}^n)$, Q a closed convex set, $\bar{\boldsymbol{x}} \in \mathbb{R}^n$, and $\gamma > 0$. Denote by

$$\begin{array}{rcl} \boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma) & = & \arg\min_{\boldsymbol{x}\in Q} \left[f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|^2 \right], \\ \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma) & = & \gamma(\bar{\boldsymbol{x}} - \boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)). \end{array}$$

We call $\mathbf{g}_{Q}(\bar{\mathbf{x}}; \gamma)$ the gradient mapping of f on Q.

Theorem 2.7.3 Let $f \in \mathcal{S}_{u,L}^{1,1}(\mathbb{R}^n)$, $\gamma \geq L$, and $\bar{\boldsymbol{x}} \in \mathbb{R}^n$. Then

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_Q(\bar{\boldsymbol{x}};\gamma)) + \langle \boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \|\boldsymbol{g}_Q(\bar{\boldsymbol{x}};\gamma)\|^2 + \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|^2, \quad \forall \boldsymbol{x} \in Q.$$

Proof: Denote $\mathbf{x}_Q = \mathbf{x}_Q(\bar{\mathbf{x}}; \gamma)$ and $\mathbf{g}_Q = \mathbf{g}_Q(\bar{\mathbf{x}}; \gamma)$. Let $\phi(\mathbf{x}) = f(\bar{\mathbf{x}}) + \langle f'(\bar{\mathbf{x}}), \mathbf{x} - \bar{\mathbf{x}} \rangle + \frac{\gamma}{2} \|\mathbf{x} - \bar{\mathbf{x}}\|^2$.

Then $\phi'(\boldsymbol{x}) = f'(\bar{\boldsymbol{x}}) + \gamma(\boldsymbol{x} - \bar{\boldsymbol{x}})$, and for $\forall \boldsymbol{x} \in Q$, we have

$$\langle f'(\bar{\boldsymbol{x}}) - \boldsymbol{g}_O, \boldsymbol{x} - \boldsymbol{x}_O \rangle = \langle \phi'(\boldsymbol{x}_O), \boldsymbol{x} - \boldsymbol{x}_O \rangle \ge 0,$$

due to Lemma 2.7.1.

Hence,

$$f(\boldsymbol{x}) - \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|^{2} \geq f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle$$

$$= f(\bar{\boldsymbol{x}}) + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x}_{Q} - \bar{\boldsymbol{x}} \rangle$$

$$\geq f(\bar{\boldsymbol{x}}) + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle + \langle f'(\bar{\boldsymbol{x}}), \boldsymbol{x}_{Q} - \bar{\boldsymbol{x}} \rangle$$

$$= \phi(\boldsymbol{x}_{Q}) - \frac{\gamma}{2} \|\boldsymbol{x}_{Q} - \bar{\boldsymbol{x}}\|^{2} + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle$$

$$= \phi(\boldsymbol{x}_{Q}) - \frac{1}{2\gamma} \|\boldsymbol{g}_{Q}\|^{2} + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \boldsymbol{x}_{Q} \rangle$$

$$= \phi(\boldsymbol{x}_{Q}) - \frac{1}{2\gamma} \|\boldsymbol{g}_{Q}\|^{2} + \langle \boldsymbol{g}_{Q}, \bar{\boldsymbol{x}} - \boldsymbol{x}_{Q} \rangle + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle$$

$$= \phi(\boldsymbol{x}_{Q}) + \frac{1}{2\gamma} \|\boldsymbol{g}_{Q}\|^{2} + \langle \boldsymbol{g}_{Q}, \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle.$$

Since $\gamma \geq L$, $\phi(\boldsymbol{x}_Q) \geq f(\boldsymbol{x}_Q)$, and we have the result.

We are ready to define our estimated sequence. Assume that $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ possible with $\mu = 0$ (which means that $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$), $\boldsymbol{x}_0 \in Q$, and $\gamma_0 > 0$. Define

$$\phi_0(\boldsymbol{x}) = f(\boldsymbol{x}_0) + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{x}_0\|^2,$$

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{x}_Q(\boldsymbol{y}_k; L)) + \frac{1}{2L} \|\boldsymbol{g}_Q(\boldsymbol{y}_k; L)\|^2 + \langle \boldsymbol{g}_Q(\boldsymbol{y}_k; L), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right],$$

for the sequences $\{\alpha_k\}_{k=0}^{\infty}$ and $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ which will be defined later. Similarly, we can prove that $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ can be written in the form

$$\phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{x} - \boldsymbol{v}_k\|^2$$

for
$$\phi_0^* = f(\boldsymbol{x}_0)$$
, $\boldsymbol{v}_0 = \boldsymbol{x}_0$:

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu$$

$$\boldsymbol{v}_{k+1} = \frac{1}{\gamma_{k+1}}[(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \boldsymbol{g}_Q(\boldsymbol{y}_k; L)],$$

$$\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{x}_Q(\boldsymbol{y}_k; L)) + \left(\frac{\alpha_k}{2L} - \frac{\alpha_k^2}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_Q(\boldsymbol{y}_k; L)\|^2$$

$$+ \frac{\alpha_k (1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 + \langle \boldsymbol{g}_Q(\boldsymbol{y}_k; L), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle\right).$$

Now, $\phi_0^* \ge f(\boldsymbol{x}_0)$. Assuming that $\phi_k^* \ge f(\boldsymbol{x}_k)$,

$$\phi_{k+1}^{*} \geq (1 - \alpha_{k}) f(\boldsymbol{x}_{k}) + \alpha_{k} f(\boldsymbol{x}_{Q}(\boldsymbol{y}_{k}; L)) + \left(\frac{\alpha_{k}}{2L} - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_{Q}(\boldsymbol{y}_{k}; L)\|^{2}$$

$$+ \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \langle \boldsymbol{g}_{Q}(\boldsymbol{y}_{k}; L), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle$$

$$\geq f(\boldsymbol{x}_{Q}(\boldsymbol{y}_{k}; L)) + \left(\frac{1}{2L} - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_{Q}(\boldsymbol{y}_{k}; L)\|^{2}$$

$$+ (1 - \alpha_{k}) \langle \boldsymbol{g}_{Q}(\boldsymbol{y}_{k}; L), \frac{\alpha_{k}\gamma_{k}}{\gamma_{k+1}} (\boldsymbol{v}_{k} - \boldsymbol{y}_{k}) + \boldsymbol{x}_{k} - \boldsymbol{y}_{k} \rangle,$$

where the last inequality follows from Theorem 2.7.3.

Therefore, if we choose

$$egin{array}{lcl} oldsymbol{x}_{k+1} &=& oldsymbol{x}_Q(oldsymbol{y}_k;L), \ Llpha_k^2 &=& (1-lpha_k)\gamma_k+lpha_k\mu \equiv \gamma_{k+1}, \ oldsymbol{y}_k &=& rac{1}{\gamma_k+lpha_k\mu}(lpha_k\gamma_koldsymbol{v}_k+\gamma_{k+1}oldsymbol{x}_k), \end{array}$$

we obtain $\phi_{k+1}^* \ge f(\boldsymbol{x}_{k+1})$ as desired.

Constant Step Scheme for the Optimal Gradient Method Step 0: Choose $\boldsymbol{x}_0 \in \mathbb{R}^n$, $\alpha_0 \in (0,1)$ such that $\mu \leq \frac{\alpha_0(\alpha_0L-\mu)}{1-\alpha_0} \leq L$, set $\boldsymbol{y}_0 := \boldsymbol{x}_0$, k := 0Step 1: Compute $f(\boldsymbol{y}_k)$ and $f'(\boldsymbol{y}_k)$ Step 2: Set $\boldsymbol{x}_{k+1} := \boldsymbol{x}_Q(\boldsymbol{y}_k; L)$ Step 3: Compute $\alpha_{k+1} \in (0,1)$ from the equation $\alpha_{k+1}^2 = (1-\alpha_{k+1})\alpha_k^2 + \mu\alpha_{k+1}/L$ Step 4: Set $\beta_k := \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2+\alpha_{k+1}}$. Step 5: Set $\boldsymbol{y}_{k+1} := \boldsymbol{x}_{k+1} + \beta_k(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k)$, k := k+1 and go to Step 1

The rate of converge of this algorithm is exactly the same as the previous ones.

2.8 Further reading

- 1. Obviously, the first reading should be the continuation of [NESTEROV2004], where Nesterov extends the method for constrained minimization, min-max type problems, and non-differentiable problems.
- 2. A more general approach and variations can be found in [DASPREMONT2008, LLM2006, NESTEROV2005, NESTEROV2005-2, NESTEROV2007, NESTERVO2009, TSENG2010], etc.

2.9 Exercises

- 1. Prove Theorem 2.1.2.
- 2. Prove Lemma 2.1.3.
- 3. Prove Theorem 2.1.5.
- 4. Prove Corollary 2.3.3.
- 5. Prove Theorem 2.3.4.
- 6. Prove Theorem 2.3.6.
- 7. Prove Corollary 2.5.2.
- 8. Complete the prove of Lemma 2.6.3.
- 9. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a particular case of the general optimal gradient method for the following choice:

$$egin{array}{lll} \gamma_{k+1} &\equiv & Llpha_k^2 = (1-lpha_k)\gamma_k + lpha_k\mu \ & oldsymbol{y}_k &= & rac{lpha_k\gamma_koldsymbol{v}_k + \gamma_{k+1}oldsymbol{x}_k}{\gamma_k + lpha_k\mu} \ & oldsymbol{x}_{k+1} &= & oldsymbol{y}_k - rac{1}{L}f'(oldsymbol{y}_k) \ & oldsymbol{v}_{k+1} &= & rac{(1-lpha_k)\gamma_koldsymbol{v}_k + lpha_k\muoldsymbol{y}_k - lpha_kf'(oldsymbol{y}_k)}{\gamma_{k+1}}. \end{array}$$

- (a) Show that $v_{k+1} = x_k + \frac{1}{\alpha_k}(x_{k+1} x_k)$.
- (b) Show that $\boldsymbol{y}_{k+1} = \boldsymbol{x}_{k+1} + \beta_k (\boldsymbol{x}_{k+1} \boldsymbol{x}_k)$ for $\beta_k = \frac{\alpha_{k+1} \gamma_{k+1} (1 \alpha_k)}{\alpha_k (\gamma_{k+1} + \alpha_{k+1} \mu)}$.
- (c) Show that $\beta_k = \frac{\alpha_k(1-\alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$.
- (d) Explain why $\alpha_{k+1}^2 = (1 \alpha_{k+1})\alpha_k^2 + \frac{\mu}{L}\alpha_{k+1}$.

Bibliography

- [DASPREMONT2008] A. d'Aspremont, "Smooth optimization with approximate gradient", SIAM Journal on Optimization 19 (2008), pp. 1171–1183.
- [LLM2006] G. Lan, Z. Lu, and R. D. C. Monteiro, "Primal-dual first-order methods with $\mathcal{O}(1/\varepsilon)$ iteration-complexity for cone programming", *Mathematical Programming*, to appear.
- [NESTEROV2004] Yu. Nesterov, Introductory Lecture on Convex Optimization: A Basic Course, (Kluwer Academic Publishers, Boston, 2004).
- [NESTEROV2005] Yu. Nesterov, "Smooth minimization of non-smooth functions", *Mathematical Programming* **103** (2005), pp. 127–152.
- [NESTEROV2005-2] Yu. Nesterov, "Excessive gap technique in nonsmooth convex minimization", SIAM Journal on Optimization 16 (2005), pp. 669–700.
- [NESTEROV2007] Yu. Nesterov, "Smoothing technique and its applications in semidefinite optimization", *Mathematical Programming* **110** (2007), pp. 245–259.
- [NESTERVO2009] Yu. Nesterov, "Primal-dual subgradient methods for convex problems", Mathematical Programming 120 (2009), pp. 221-259.
- [NOCEDAL2006] J. Nocedal and S. J. Wright, *Numerical Optimization*, 2nd edition, (Springer, New York, 2006).
- [TSENG2010] P. Tseng, "Approximation accuracy, gradient methods, and error bound for structured convex optimization", *Mathematical Programming* **12** (2010), pp. 263–295.
- [YUAN2010] Y.-X. Yuan, "A short note on the Q-linear convergence of the steepest descent method", Mathematical Programming 123 (2010), pp. 339–343.